当前位置: 首页 > news >正文

做网站要考虑的/谷歌浏览器最新版本

做网站要考虑的,谷歌浏览器最新版本,wordpress创建注册页面,做照片有那些网站参考: https://developers.google.com/mediapipe/solutions/customization/image_classifier https://colab.research.google.com/github/googlesamples/mediapipe/blob/main/examples/customization/image_classifier.ipynb#scrollToplvO-YmcQn5g 安装&#xff1a…

参考:
https://developers.google.com/mediapipe/solutions/customization/image_classifier
https://colab.research.google.com/github/googlesamples/mediapipe/blob/main/examples/customization/image_classifier.ipynb#scrollTo=plvO-YmcQn5g

安装:

pip install mediapipe-model-maker  -i http://mirrors.aliyun.com/pypi/simple --trusted-host mirrors.aliyun.com --use-pep517

版本错误情况

1)RuntimeError: File loading is not yet supported on Windows

其中mediapipe版本要大于等于0.10.0;下图中的要升级;不然后续用python 加载文件会报:

2)ImportError: cannot import name ‘array_record_module’ from ‘array_record.python’ ;参考:https://blog.csdn.net/LQ_001/article/details/130991571;原因:包依赖关系出现问题,原来版本 tensorflow-datasets==4.9.0

pip install tensorflow-datasets==4.8.3

在这里插入图片描述

在这里插入图片描述

1、训练代码

import os
import tensorflow as tf
assert tf.__version__.startswith('2')from mediapipe_model_maker import image_classifierimport matplotlib.pyplot as pltimage_path = os.path.join(os.path.dirname(r"C:\Users\loong\Downloads\mediapipe\flower_photos\flower_photos"), 'flower_photos')   ## down data  :https://storage.googleapis.com/download.tensorflow.org/example_images/flower_photos.tgz#Review datalabels = []
for i in os.listdir(image_path):if os.path.isdir(os.path.join(image_path, i)):labels.append(i)
print(labels)##plt 
NUM_EXAMPLES = 5for label in labels:label_dir = os.path.join(image_path, label)example_filenames = os.listdir(label_dir)[:NUM_EXAMPLES]fig, axs = plt.subplots(1, NUM_EXAMPLES, figsize=(10,2))for i in range(NUM_EXAMPLES):axs[i].imshow(plt.imread(os.path.join(label_dir, example_filenames[i])))axs[i].get_xaxis().set_visible(False)axs[i].get_yaxis().set_visible(False)fig.suptitle(f'Showing {NUM_EXAMPLES} examples for {label}')plt.show()

在这里插入图片描述

#Create dataset;训练集、测试集data = image_classifier.Dataset.from_folder(image_path)
train_data, remaining_data = data.split(0.8)
test_data, validation_data = remaining_data.split(0.5)## retrain model 训练模型spec = image_classifier.SupportedModels.MOBILENET_V2    ##有几个预训练模型,需要联网下载
hparams = image_classifier.HParams(export_dir="exported_model")  ##指定模型保存位置
options = image_classifier.ImageClassifierOptions(supported_model=spec, hparams=hparams)
model = image_classifier.ImageClassifier.create(train_data = train_data,validation_data = validation_data,options=options,
)## 验证模型
loss, acc = model.evaluate(test_data)
print(f'Test loss:{loss}, Test accuracy:{acc}')##保存模型
model.export_model()

在这里插入图片描述

在这里插入图片描述
默认训练是10epcos
在这里插入图片描述

查看训练tebsorboard:
注意ValueError: Duplicate plugins for name projector错误,参考https://blog.csdn.net/weixin_44966641/article/details/123292034;我这里是换了个conda环境重新安装个新的tensorflow解决

tensorboard --logdir=.

日志存放默认地址
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

##模型压缩
from mediapipe_model_maker import quantizationquantization_config = quantization.QuantizationConfig.for_int8(train_data)
model.export_model(model_name="model_int8.tflite", quantization_config=quantization_config)

从8M缩小到3M左右
在这里插入图片描述

2、加载推理

参考:https://blog.csdn.net/weixin_42357472/article/details/131322076

import mediapipe as mpBaseOptions = mp.tasks.BaseOptions
ImageClassifier = mp.tasks.vision.ImageClassifier
ImageClassifierOptions = mp.tasks.vision.ImageClassifierOptions
VisionRunningMode = mp.tasks.vision.RunningModeoptions = ImageClassifierOptions(base_options=BaseOptions(model_asset_path=r"C:\User**ediapipe\model.tflite"),max_results=5,running_mode=VisionRunningMode.IMAGE)   ##加载模型classifier = ImageClassifier.create_from_options(options)# Load the input image from an image file.
mp_image = mp.Image.create_from_file(r"C:\Users\loong\Downloads\sun2.jpg")# Perform image classification on the provided single image.
classification_result = classifier.classify(mp_image)
classification_result

在这里插入图片描述
在这里插入图片描述

相关文章:

mediapipe 训练自有图像数据分类

参考: https://developers.google.com/mediapipe/solutions/customization/image_classifier https://colab.research.google.com/github/googlesamples/mediapipe/blob/main/examples/customization/image_classifier.ipynb#scrollToplvO-YmcQn5g 安装&#xff1a…...

【pytorch】torch.gather()函数

dim0时 index[ [x1,x2,x2],[y1,y2,y2],[z1,z2,z3] ]如果dim0 填入方式为: index[ [(x1,0),(x2,1),(x3,2)][(y1,0),(y2,1),(y3,2)][(z1,0),(z2,1),(z3,2)] ]input [[1, 2, 3, 4],[5, 6, 7, 8],[9, 10, 11, 12] ] # shape(3,4) input torch.…...

Mac 安装psycopg2,报错Error: pg_config executable not found.

在mac 上安装psycopg2的方法:执行:pip3 install psycopg2-binary。 如果执行pip3 install psycopg2,无法安装psycopg2 报错信息如下: Collecting psycopg2Using cached psycopg2-2.9.9.tar.gz (384 kB)Preparing metadata (set…...

域名系统 DNS

DNS 概述 域名系统 DNS(Domain Name System)是因特网使用的命名系统,用来把便于人们使用的机器名字转换成为 IP 地址。域名系统其实就是名字系统。为什么不叫“名字”而叫“域名”呢?这是因为在这种因特网的命名系统中使用了许多的“域(domain)”&#x…...

Vue $nextTick 模板解析后在执行的函数

this.$nextTick(()>{ 模板解析后在执行的函数 })...

VBA技术资料MF76:将自定义颜色添加到调色板

我给VBA的定义:VBA是个人小型自动化处理的有效工具。利用好了,可以大大提高自己的工作效率,而且可以提高数据的准确度。我的教程一共九套,分为初级、中级、高级三大部分。是对VBA的系统讲解,从简单的入门,到…...

zilong-20231030

1)k个反转 2)n!转12进制 求末尾多少0 一共有几位 (考虑了溢出问题) 3)大量数据获取前10个 4)reemap地城结构 5)红黑树规则特性 6)热更 7)压测 8)业务 跨服实现 9)有哪些线程以及怎么分配...

目标检测算法发展史

前言 比起图像识别,现在图片生成技术要更加具有吸引力,但是要步入AIGC技术领域,首先不推荐一上来就接触那些已经成熟闭源的包装好了再提供给你的接口网站,会使用别人的模型生成一些图片就能叫自己会AIGC了吗?那样真正…...

React 生成传递给无障碍属性的唯一 ID

useId() 在组件的顶层调用 useId 生成唯一 ID: import { useId } from react; function PasswordField() { const passwordHintId useId(); // ...参数 useId 不带任何参数。 返回值 useId 返回一个唯一的字符串 ID,与此特定组件中的 useI…...

十种排序算法(1) - 准备测试函数和工具

1.准备工作 我们先写一堆工具&#xff0c;后续要用&#xff0c;不然这些写在代码里可读性巨差 #pragma once #include<stdio.h>//为C语言定义bool类型 typedef int bool; #define false 0 #define true 1//用于交互a和b inline void swap(int* a, int* b) {/*int c *a…...

IRF联动 BFD-MAD

文章目录 IRF堆叠一、主设备配置二、备设备配置三、验证 MAD检测一、MAD检测二、MAD验证 本实验以2台设备进行堆叠示例&#xff0c;按照配置顺序&#xff0c;先配置主设备&#xff0c;再配置备设备。在IRF配置前暂时先不接堆叠线&#xff0c;按步骤提示接线。 IRF堆叠 一、主设…...

双向链表的初步练习

&#x1d649;&#x1d65e;&#x1d658;&#x1d65a;!!&#x1f44f;&#x1f3fb;‧✧̣̥̇‧✦&#x1f44f;&#x1f3fb;‧✧̣̥̇‧✦ &#x1f44f;&#x1f3fb;‧✧̣̥̇: Solitary-walk ⸝⋆ ━━━┓ - 个性标签 - &#xff1a;来于“云”的“羽球人”…...

IDE的组成

集成开发环境&#xff08;IDE&#xff0c;Integrated Development Environment &#xff09;是用于提供程序开发环境的应用程序&#xff0c;一般包括代码编辑器、编译器、调试器和图形用户界面等工具。集成了代码编写功能、分析功能、编译功能、调试功能等一体化的开发软件服务…...

项目解读_v2

1. 项目介绍 如果使用task2-1作为示例时&#xff0c; 运行process.py的过程中需要确认 process调用的是函数 preprocess_ast_wav2vec(wav, fr) 1.1 任务简介 首个开源的儿科呼吸音数据集&#xff0c; 通过邀请11位医师标注&#xff1b; 数字听诊器的采样频率和量化分辨率分…...

杀毒软件哪个好,杀毒软件有哪些

安全杀毒软件是一种专门用于检测、防止和清除计算机病毒、恶意软件和其他安全威胁的软件。这类软件通常具备以下功能&#xff1a; 1. 实时监测&#xff1a;通过实时监测计算机系统&#xff0c;能够发现并防止病毒、恶意软件等安全威胁的入侵。 2. 扫描和清除&#xff1a;可以…...

Ubuntu上安装配置Nginx

要在 Ubuntu 上安装 Nginx&#xff0c;请按照以下步骤进行操作&#xff1a; 打开终端&#xff1a;可以使用快捷键 Ctrl Alt T 打开终端&#xff0c;或者在开始菜单中搜索 “Terminal” 并点击打开。 更新软件包列表&#xff1a;在终端中运行以下命令&#xff0c;以确保软件包…...

C++之string

C之string #include <iostream>using namespace std;/*string();//创建一个空的字符串string(const char* s);//使用字符串s初始化string(const string& str);//使用一个string对象初始化另外一个string对象string(int n,char c);//使用n个字符c初始化*/void test1()…...

多线程---单例模式

文章目录 什么是单例模式&#xff1f;饿汉模式懒汉模式版本一&#xff1a;最简单的懒汉模式版本二&#xff1a;考虑懒汉模式存在的线程安全问题版本三&#xff1a;更完善的解决线程安全问题版本四&#xff1a;解决指令重排序问题 什么是单例模式&#xff1f; 单例模式&#xf…...

SpringBoot相比于Spring的优点(自动配置和依赖管理)

自动配置 例子见真章 我们先看一下我们Spring整合Druid的过程&#xff0c;以及我们使用SpringBoot整合Druid的过程我们就知道我们SpringBoot的好处了。 Spring方式 Spring方式分为两种&#xff0c;第一种就是我们使用xml进行整合&#xff0c;第二种就是使用我们注解进行简化…...

SAP SPAD新建打印纸张

SAP SPAD新建打印纸张 1.事务代码SPAD 2.完全管理&#xff0d;设备类型&#xff0d;页格式-显示(创建格式页) 3.按标准A4纸张为模板参考创建。同一个纸张纵向/横向各创建1次(创建格式页) 4.完全管理&#xff0d;设备类型&#xff0d;格式类型-显示(创建格式类型&#xff0…...

C# 图解教程 第5版 —— 第11章 结构

文章目录 11.1 什么是结构11.2 结构是值类型11.3 对结构赋值11.4 构造函数和析构函数11.4.1 实例构造函数11.4.2 静态构造函数11.4.3 构造函数和析构函数小结 11.5 属性和字段初始化语句11.6 结构是密封的11.7 装箱和拆箱&#xff08;*&#xff09;11.8 结构作为返回值和参数11…...

车载电子电器架构 —— 基于AP定义车载HPC

我是穿拖鞋的汉子,魔都中坚持长期主义的汽车电子工程师。 老规矩,分享一段喜欢的文字,避免自己成为高知识低文化的工程师: 屏蔽力是信息过载时代一个人的特殊竞争力,任何消耗你的人和事,多看一眼都是你的不对。非必要不费力证明自己,无利益不试图说服别人,是精神上的节…...

Redis原理-IO模型和持久化

高性能IO模型 为什么单线程Redis能那么快 一方面&#xff0c;Redis 的大部分操作在内存上完成&#xff0c;再加上它采用了高效的数据结构&#xff0c;例如哈希表和跳表&#xff0c;这是它实现高性能的一个重要原因。另一方面&#xff0c;就是 Redis 采用了多路复用机制&#…...

PID控制示例

PID控制简单示例 import numpy as np import matplotlib.pyplot as plt import copy# 定义曲线函数 y sin(x) def target_curve(x):return np.sin(x)class PID:def __init__(self, kp, ki, kd):self.kp kpself.ki kiself.kd kdself.ep 0.0self.ei 0.0self.ed 0.0self.d…...

GoLand GC(垃圾回收机制)简介及调优

GC(Garbage Collector)垃圾回收机制及调优 简单理解GC机制 其实gc机制特别容易理解&#xff0c;就是物理内存的自动清理工。我们可以把内存想象成一个房间&#xff0c;程序运行时会在这个房间里存放各种东西&#xff0c;但有时候我们会忘记把不再需要的东西拿出去&#xff0c…...

AI:40-基于深度学习的森林火灾识别

🚀 本文选自专栏:AI领域专栏 从基础到实践,深入了解算法、案例和最新趋势。无论你是初学者还是经验丰富的数据科学家,通过案例和项目实践,掌握核心概念和实用技能。每篇案例都包含代码实例,详细讲解供大家学习。 📌📌📌本专栏包含以下学习方向: 机器学习、深度学…...

37基于MATLAB平台的图像去噪,锐化,边缘检测,程序已调试通过,可直接运行。

基于MATLAB平台的图像去噪&#xff0c;锐化&#xff0c;边缘检测&#xff0c;程序已调试通过&#xff0c;可直接运行。 37matlab边缘检测图像处理 (xiaohongshu.com)...

通过Metasploit+Ngrok穿透内网长期维持访问外网Android设备

前言: 因为之前作为小白我不会在Kali Linux里面把IP映射出外网&#xff0c;卡在那个地方很久&#xff0c;后来解决了这个问题就写方法出来和大家分享分享。 环境&#xff1a; Kali Linux系统(https://www.kali.org/downloads/) Metasploit Ngrok Linux64位的端口转发工具(htt…...

STM32 CubeMX配置USB HID功能,及安装路径

STM32CubeMX学习笔记&#xff08;46&#xff09;——USB接口使用&#xff08;HID自定义设备&#xff09; STM32CubeMX实现STM32 USBHID双向64字节通信(下位机部分) STM32 USB HID设置(STM32CubeMX) 关于keil 5安装出现Fail to set path to Software Packs.问题解决方法...

【错误解决方案】ModuleNotFoundError: No module named ‘transformers‘

1. 错误提示 在python程序中&#xff0c;尝试导入一个名为transformers的模块&#xff0c;但Python提示找不到这个模块。 错误提示&#xff1a;ModuleNotFoundError: No module named ‘transformers‘ 2. 解决方案 所遇到的问题是Python无法找到名为transformers的模块&am…...