当前位置: 首页 > news >正文

SpringCloud(三) Ribbon负载均衡

SpringCloud(二) Eureka注册中心的使用-CSDN博客

在SpringCloud(二)中学习了如何通过Eureka实现服务的注册和发送,从而通过RestTemplate实现不同微服务之间的调用,加上@LoadBalance注解之后实现负载均衡,那负载均衡的原理是什么呢?

目录

一, 负载均衡

1.1 负载均衡原理

 1.2 源码追踪

1, LoadBalanceInterceptor

2, LoadBalanceClient

3, 负载均衡策略 

1.3 总结负载均衡 

二, 代码示例

三, 负载均衡策略

3.1 负载均衡策略

3.2 自定义负载均衡策略

四, 负载均衡


一, 负载均衡

1.1 负载均衡原理

SpringCloud底层其实是利用了一个名为Ribbon的组件来实现负载均衡功能的.

此时就可以将我们发出的http://userservice/user/1请求变成http://localhost:8081

 1.2 源码追踪

为什么我们只输入了user-service的服务名称就可以访问了呢?

显然有人帮我们根据service名称,获取到了实例的ip和端口号,它就是LoadBalanceInterceptor,这个类会对RestTemplate的请求进行拦截,然后从Eureka根据服务id获取服务列表,随后利用负载均衡算法得到真是的服务地址信息,替换服务id.

1, LoadBalanceInterceptor

可以看到这里的intercept方法,拦截了用户大的HttpRequest请求,然后做了以下几件事:

  • request.getURI():获取请求uri,本例中就是http://userservice/user/1
  • originalUri.getHost():获取uri路径的主机名,其实就是服务id,user-service
  • this.loadBalancer.execute():处理服务id,和用户请求

2, LoadBalanceClient

继续跟入execute方法:

  • getLoadBalancer(serviceId):根据服务id获取ILoadBalancer,而ILoadBalancer会拿着服务id去eureka中获取服务列表并保存起来
  • getServer(loadBalancer):利用内置的负载均衡算法,从服务列表中选择一个

放行后,再次访问并跟踪,发现获取的是8081:

3, 负载均衡策略 

在刚才的代码中,可以看到获取服务是通过一个getServer方法来做负载均衡:

继续跟入:

 继续跟踪源码chooseServer方法,发现这么一段代码:

 看看这个rule是谁:

这里的rule默认值是一个RoundRobinRule,看类的介绍(意思是轮询):

1.3 总结负载均衡 

SpringCloudRibbon的底层采用了一个拦截器,拦截了RestTemplate发出的请求,对地址进行了修改,用一幅图总结一下:

基本流程如下:

  •  拦截我们的RestTemplate请求http://userservice/user/1;
  • RibbonLoadBalancerClient会从请求url中获取服务名称,也就是userservice;
  • DynamicServerListBalance根据userservice到eureka拉取服务列表;
  • eureka返回列表,localhots:8081和localhost:8082;
  • IRule利用内置负载均衡规则,从列表中选择一个,例如localhost:8081;
  • RibbonLoadBalanceClient修改请求地址,用localhost:8081代替userservice,得到http://localhost:8081/user/1.

二, 代码示例

现在我们有两个user-service微服务,使用order-service多次调用user-service查看服务落在两个user-service的频率

启动服务并清空两个user-service服务的日志:

 在浏览器多次调用order-service中的queryOrderByUserId接口:

分别查看两个user-service的日志打印结果:

user-service1:

user-service2:

从日志结果可以看出,在不改变负载均衡策略的情况下,默认的策略是轮询的方式.

三, 负载均衡策略

3.1 负载均衡策略

负载均衡的规则都定义在IRule接口中,而IRule有很多不同的实现类:

不同规则的含义如下:

内置负载均衡规则类规则描述
RoundRobinRule简单轮询服务列表来选择服务器。它是Ribbon默认的负载均衡规则。
AvailabilityFilteringRule对以下两种服务器进行忽略: (1)在默认情况下,这台服务器如果3次连接失败,这台服务器就会被设置为“短路”状态。短路状态将持续30秒,如果再次连接失败,短路的持续时间就会几何级地增加。 (2)并发数过高的服务器。如果一个服务器的并发连接数过高,配置了AvailabilityFilteringRule规则的客户端也会将其忽略。并发连接数的上限,可以由客户端的<clientName>.<clientConfigNameSpace>.ActiveConnectionsLimit属性进行配置。
WeightedResponseTimeRule为每一个服务器赋予一个权重值。服务器响应时间越长,这个服务器的权重就越小。这个规则会随机选择服务器,这个权重值会影响服务器的选择。
ZoneAvoidanceRule以区域可用的服务器为基础进行服务器的选择。使用Zone对服务器进行分类,这个Zone可以理解为一个机房、一个机架等。而后再对Zone内的多个服务做轮询。
BestAvailableRule忽略那些短路的服务器,并选择并发数较低的服务器。
RandomRule随机选择一个可用的服务器。
RetryRule重试机制的选择逻辑。

默认的实现就是ZoneAvoidanceRule,是一种轮询方案.

3.2 自定义负载均衡策略

通过定义IRule实现可以修改负载均衡规则,有两种方式:

1. 代码方式:在order-service中的OrderApplication类中,定义一个新的IRule:

@Bean
public IRule randomRule(){return new RandomRule();
}

2. 配置文件方式:在order-service的application.yml文件中,添加新的配置也可以修改规则:

userservice: # 给某个微服务配置负载均衡规则,这里是userservice服务ribbon:NFLoadBalancerRuleClassName: com.netflix.loadbalancer.RandomRule # 负载均衡规则 

一般用默认的负载均衡规则,不做修改.

四, 负载均衡

Ribbon默认是采用懒加载,即第一次访问时才会去创建LoadBalanceClient,请求时间会很长.

而饥饿加载则会在项目启动时创建,降低第一次访问的耗时,通过下面配置开启饥饿加载:

ribbon:eager-load:enabled: trueclients: userservice

未开启饥饿加载时:

第一次访问的时候耗时是579ms

开启饥饿加载时:

先在配置文件里进行配置

 重启order-service进行访问

可以看出开启饥饿加载后第一次访问的时间变少了很多,未232ms.

 

相关文章:

SpringCloud(三) Ribbon负载均衡

SpringCloud(二) Eureka注册中心的使用-CSDN博客 在SpringCloud(二)中学习了如何通过Eureka实现服务的注册和发送,从而通过RestTemplate实现不同微服务之间的调用,加上LoadBalance注解之后实现负载均衡,那负载均衡的原理是什么呢? 目录 一, 负载均衡 1.1 负载均衡原理 1.2 源…...

vue2:路由前置守卫无法获取到this.$store.state.xxx

在获取到vuex的数据时候&#xff0c;想在router目录下的index.js文件去获取到vuex仓库中声明的全局变量&#xff0c;但是通过this.$store.stote.xxx去获取的时候&#xff0c;报错提示&#xff1a;$store未定义 一、store/index.js const store new Vuex.Store({state: {// 属…...

Unity的碰撞检测(五)

温馨提示&#xff1a;本文基于前一篇“Unity的碰撞检测(四)​​​​​​​”继续探讨两个游戏对象具备刚体的BodyType均为Dynamic&#xff0c;但是Collision Detection属性不同的碰撞检测&#xff0c;阅读本文则默认已阅读前文。 &#xff08;一&#xff09;测试说明 在基于两…...

Flutter笔记:Flutter的应用生命周期状态(lifecycleState)管理

Flutter笔记 Flutter的应用生命周期状态&#xff08;lifecycleState&#xff09;管理 作者&#xff1a;李俊才 &#xff08;jcLee95&#xff09;&#xff1a;https://blog.csdn.net/qq_28550263 邮箱 &#xff1a;291148484163.com 本文地址&#xff1a;https://blog.csdn.net/…...

代碼隨想錄算法訓練營|第五十四天|300.最长递增子序列、674. 最长连续递增序列、718. 最长重复子数组。刷题心得(c++)

讀題 300.最长递增子序列 看完代码随想录之后的想法 思想上很簡單&#xff0c;dp[i]表示i之前的包括i的numbers[i]節尾的最長上升子序列的長度 並且透過兩層迴圈&#xff0c;一層遍歷全部&#xff0c;一層遍歷到i&#xff0c;透過比較當前dp[i]還是dp[j] 1哪個比較大&…...

正点原子嵌入式linux驱动开发——Linux 串口RS232/485/GPS 驱动

串口是很常用的一个外设&#xff0c;在Linux下通常通过串口和其他设备或传感器进行通信&#xff0c;根据 电平的不同&#xff0c;串口分为TTL和RS232。不管是什么样的接口电平&#xff0c;其驱动程序都是一样的&#xff0c;通过外接RS485这样的芯片就可以将串口转换为RS485信号…...

HDFS工作流程和机制

HDFS写数据流程&#xff08;上传文件&#xff09; 核心概念--Pipeline管道 HDFS在上传文件写数据过程中采用的一种传输方式。 线性传输&#xff1a;客户端将数据写入第一个数据节点&#xff0c;第一个数据节点保存数据之后再将快复制到第二个节点&#xff0c;第二节点复制给…...

CMMI/ASPICE认证咨询及工具服务

服务概述 质量专家戴明博士的名言“如果你不能描述做事情的过程&#xff0c;那么你不知道你在做什么”。过程是连接有能力的工程师和先进技术的纽带&#xff0c;因此产品开发过程直接决定了产品的质量和研发的效率。 经纬恒润可结合多体系要求&#xff0c;如IATF16949\ISO26262…...

【NI-DAQmx入门】计数器

1.计数器的作用 NI产品的计数器一般来说兼容TTL信号&#xff0c;定义如下&#xff1a;0-0.8V为逻辑低电平&#xff0c;2~5V为高电平&#xff0c;0.8-2V为高阻态&#xff0c;最大上升下降时间为50ns。 计数器可以感测上升沿&#xff08;从逻辑低到逻辑高的转变&#xff09;和下降…...

Python爬取读书网的图片链接和书名并保存在数据库中

一个比较基础且常见的爬虫&#xff0c;写下来用于记录和巩固相关知识。 一、前置条件 本项目采用scrapy框架进行爬取&#xff0c;需要提前安装 pip install scrapy# 国内镜像 pip install scrapy -i https://pypi.douban.com/simple 由于需要保存数据到数据库&#xff0c;因…...

js解决加油站

在一条环路上有 n 个加油站&#xff0c;其中第 i 个加油站有汽油 gas[i] 升。 你有一辆油箱容量无限的的汽车&#xff0c;从第 i 个加油站开往第 i1 个加油站需要消耗汽油 cost[i] 升。你从其中的一个加油站出发&#xff0c;开始时油箱为空。 给定两个整数数组 gas 和 cost &…...

【c++|opencv】二、灰度变换和空间滤波---5.中值滤波

every blog every motto: You can do more than you think. https://blog.csdn.net/weixin_39190382?typeblog 0. 前言 1. 中值滤波 #include<iostream> #include<opencv2/opencv.hpp> #include"Salt.h"using namespace cv; using namespace std;voi…...

python之pytorch多进程

目录 1、创建并运行并行进程 2、使用队列&#xff08;Queue&#xff09;来共享数据 3、进程池 4、进程锁 5、比较使用多进程和使用单进程执行一段代码的时间消耗 6、共享变量 多进程是计算机科学中的一个术语&#xff0c;它是指同时运行多个进程&#xff0c;这些进程可以…...

sqoop 抽数报错com.mysql.cj.exceptions.WrongArgumentException: HOUR_OF_DAY: 2 -> 3

文章目录 1.sqoop 抽数报错: Caused by: com.mysql.cj.exceptions.WrongArgumentException: HOUR_OF_DAY: 2 -> 3 at sun.reflect.NativeConstructorAccessorImpl.newInstance0(Native Method) at sun.reflect.NativeConstructorAccessorImpl.newInstance(NativeConstructor…...

【Acwing170】加成序列(dfs+迭代加深+剪枝)题解和一点感想

本思路来自acwing算法提高课 题目描述 看本文需要准备的知识 1.dfs算法基本思想 2.对剪枝这个词有个简单的认识 迭代加深思想和此题分析 首先&#xff0c;什么是迭代加深呢&#xff1f;当一个问题的解有很大概率出现在递归树很浅的层&#xff0c;但是这个问题的解本身存在…...

Android开发知识学习——Kotlin进阶

文章目录 次级构造主构造器init 代码块构造属性data class相等性解构Elvis 操作符when 操作符operatorLambdainfix 函数嵌套函数注解使用处目标函数简化函数参数默认值扩展函数类型内联函数部分禁用用内联具体化的类型参数抽象属性委托属性委托类委托 Kotlin 标准函数课后题 次…...

iOS使用AVCaptureSession实现音视频采集

AVCaptureSession配置采集行为并协调从输入设备到采集输出的数据流。要执行实时音视频采集&#xff0c;需要实例化采集会话并添加适当的输入和输出。 AVCaptureSession&#xff1a;管理输入输出音视频流AVCaptureDevice&#xff1a;相机硬件的接口&#xff0c;用于控制硬件特性…...

springboot和flask整合nacos,使用openfeign实现服务调用,使用gateway实现网关的搭建(附带jwt续约的实现)

环境准备&#xff1a; 插件版本jdk21springboot 3.0.11 springcloud 2022.0.4 springcloudalibaba 2022.0.0.0 nacos2.2.3&#xff08;稳定版&#xff09;python3.8 nacos部署&#xff08;docker&#xff09; 先创建目录&#xff0c;分别创建config&#xff0c;logs&#xf…...

深入浅出排序算法之基数排序

目录 1. 前言 1.1 什么是基数排序⭐⭐⭐ 1.2 执行流程⭐⭐⭐⭐⭐ 2. 代码实现⭐⭐⭐ 3. 性能分析⭐⭐ 3.1 时间复杂度 3.2 空间复杂度 1. 前言 一个算法&#xff0c;只有理解算法的思路才是真正地认识该算法&#xff0c;不能单纯记住某个算法的实现代码&#xff01; 1.…...

CSS选择器、CSS属性相关

CSS选择器 CSS属性选择器 通过标签的属性来查找标签&#xff0c;标签都有属性 <div class"c1" id"d1"></div>id值和class值是每个标签都自带的属性&#xff0c;还有另外一种&#xff1a;自定义属性 <div class"c1" id"d1&…...

论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(二)

HoST框架核心实现方法详解 - 论文深度解读(第二部分) 《Learning Humanoid Standing-up Control across Diverse Postures》 系列文章: 论文深度解读 + 算法与代码分析(二) 作者机构: 上海AI Lab, 上海交通大学, 香港大学, 浙江大学, 香港中文大学 论文主题: 人形机器人…...

盘古信息PCB行业解决方案:以全域场景重构,激活智造新未来

一、破局&#xff1a;PCB行业的时代之问 在数字经济蓬勃发展的浪潮中&#xff0c;PCB&#xff08;印制电路板&#xff09;作为 “电子产品之母”&#xff0c;其重要性愈发凸显。随着 5G、人工智能等新兴技术的加速渗透&#xff0c;PCB行业面临着前所未有的挑战与机遇。产品迭代…...

Admin.Net中的消息通信SignalR解释

定义集线器接口 IOnlineUserHub public interface IOnlineUserHub {/// 在线用户列表Task OnlineUserList(OnlineUserList context);/// 强制下线Task ForceOffline(object context);/// 发布站内消息Task PublicNotice(SysNotice context);/// 接收消息Task ReceiveMessage(…...

【第二十一章 SDIO接口(SDIO)】

第二十一章 SDIO接口 目录 第二十一章 SDIO接口(SDIO) 1 SDIO 主要功能 2 SDIO 总线拓扑 3 SDIO 功能描述 3.1 SDIO 适配器 3.2 SDIOAHB 接口 4 卡功能描述 4.1 卡识别模式 4.2 卡复位 4.3 操作电压范围确认 4.4 卡识别过程 4.5 写数据块 4.6 读数据块 4.7 数据流…...

LLM基础1_语言模型如何处理文本

基于GitHub项目&#xff1a;https://github.com/datawhalechina/llms-from-scratch-cn 工具介绍 tiktoken&#xff1a;OpenAI开发的专业"分词器" torch&#xff1a;Facebook开发的强力计算引擎&#xff0c;相当于超级计算器 理解词嵌入&#xff1a;给词语画"…...

WEB3全栈开发——面试专业技能点P7前端与链上集成

一、Next.js技术栈 ✅ 概念介绍 Next.js 是一个基于 React 的 服务端渲染&#xff08;SSR&#xff09;与静态网站生成&#xff08;SSG&#xff09; 框架&#xff0c;由 Vercel 开发。它简化了构建生产级 React 应用的过程&#xff0c;并内置了很多特性&#xff1a; ✅ 文件系…...

JDK 17 序列化是怎么回事

如何序列化&#xff1f;其实很简单&#xff0c;就是根据每个类型&#xff0c;用工厂类调用。逐个完成。 没什么漂亮的代码&#xff0c;只有有效、稳定的代码。 代码中调用toJson toJson 代码 mapper.writeValueAsString ObjectMapper DefaultSerializerProvider 一堆实…...

数据分析六部曲?

引言 上一章我们说到了数据分析六部曲&#xff0c;何谓六部曲呢&#xff1f; 其实啊&#xff0c;数据分析没那么难&#xff0c;只要掌握了下面这六个步骤&#xff0c;也就是数据分析六部曲&#xff0c;就算你是个啥都不懂的小白&#xff0c;也能慢慢上手做数据分析啦。 第一…...

Appium下载安装配置保姆教程(图文详解)

目录 一、Appium软件介绍 1.特点 2.工作原理 3.应用场景 二、环境准备 安装 Node.js 安装 Appium 安装 JDK 安装 Android SDK 安装Python及依赖包 三、安装教程 1.Node.js安装 1.1.下载Node 1.2.安装程序 1.3.配置npm仓储和缓存 1.4. 配置环境 1.5.测试Node.j…...

比特币:固若金汤的数字堡垒与它的四道防线

第一道防线&#xff1a;机密信函——无法破解的哈希加密 将每一笔比特币交易比作一封在堡垒内部传递的机密信函。 解释“哈希”&#xff08;Hashing&#xff09;就是一种军事级的加密术&#xff08;SHA-256&#xff09;&#xff0c;能将信函内容&#xff08;交易细节&#xf…...