当前位置: 首页 > news >正文

使用 pyspark 进行 Clustering 的简单例子 -- KMeans

K-means算法适合于简单的聚类问题,但可能不适用于复杂的聚类问题。此外,在使用K-means算法之前,需要对数据进行预处理和缩放,以避免偏差。

K-means是一种聚类算法,它将数据点分为不同的簇或组。Pyspark实现的K-means算法基本遵循以下步骤:

  1. 随机选择K个点作为初始质心。
  2. 根据每个点到质心的距离,将每个点分配到最近的簇中。
  3. 重新计算每个簇的质心。
  4. 重复步骤2和3,直到质心不再变化或达到预设的最大迭代次数。

原理简介:
K-Means算法通过迭代寻找数据集中的k个簇,每个簇内的数据点尽可能相似(即,簇内距离最小),不同簇之间的数据点尽可能不同(即,簇间距离最大)。算法首先随机选择k个数据点作为初始的聚类中心(也称为质心),然后对数据集中的每个数据点,根据其与聚类中心的距离将其分配到最近的簇中。接着,算法重新计算每个簇的质心为该簇所有数据点的均值。重复以上步骤,直到满足收敛条件(例如,质心的移动距离小于某个阈值)或达到最大迭代次数。

优缺点介绍:
K-Means算法的优点包括:

  1. 原理简单,实现容易,收敛速度快。
  2. 对于处理大数据集,K-Means算法具有较高的效率。
  3. 当结果是密集的时,其聚类效果较好。

然而,K-Means算法也存在一些缺点:

  1. k值的选择对聚类结果影响较大,需要仔细选择。
  2. 对初值敏感,不同的初始质心选择可能会导致不同的聚类结果。
  3. 对噪声和异

相关文章:

使用 pyspark 进行 Clustering 的简单例子 -- KMeans

K-means算法适合于简单的聚类问题,但可能不适用于复杂的聚类问题。此外,在使用K-means算法之前,需要对数据进行预处理和缩放,以避免偏差。 K-means是一种聚类算法,它将数据点分为不同的簇或组。Pyspark实现的K-means算法基本遵循以下步骤: 随机选择K个点作为初始质心。根…...

LeetCode75——Day22

文章目录 一、题目二、题解 一、题目 1657. Determine if Two Strings Are Close Two strings are considered close if you can attain one from the other using the following operations: Operation 1: Swap any two existing characters. For example, abcde -> aec…...

【SOC基础】单片机学习案例汇总 Part1:电机驱动、点亮LED

📢:如果你也对机器人、人工智能感兴趣,看来我们志同道合✨ 📢:不妨浏览一下我的博客主页【https://blog.csdn.net/weixin_51244852】 📢:文章若有幸对你有帮助,可点赞 👍…...

【HTML】HTML基础知识扫盲

1、什么是HTML? HTML是超文本标记语言(Hyper Text Markup Language)是用来描述网页的一种语言 注意: HTML不是编程语言,而是标记语言 HTML文件也可以直接称为网页,浏览器的作用就是读取HTML文件&#xff…...

【Mybatis-Plus】常见的@table类注解

目录 引入Mybatis-Plus依赖 TableName 当实体类的类名在转成小写后和数据库表名相同时 当实体类的类名在转成小写后和数据库表名不相同时 Tableld TableField 当数据库字段名与实体类成员不一致 成员变量名以is开头,且是布尔值 ​编辑 成员变量名与数据库关…...

Android WMS——操作View(七)

上一篇文章我们将 view 传递给 ViewRootImpl 进行操作,这里我们主要分析 ViewRootImpl 对 View 进行操作。在正式分析之前我们先来介绍以下 View。 一、View介绍 最开始学习 View 的时候最先分析的是它的布局(LinearLayout、FrameLayout、TableLayout、RelativeLayout、Abso…...

算法__数组排序_冒泡排序直接选择排序快速排序

文章目录 冒泡排序算法说明代码实现 直接选择排序算法说明代码实现 快速排序算法说明代码实现 本篇主要讲解数组排序相关的三种算法,冒泡排序,直接排序和快速排序。 冒泡排序 算法说明 在数组中依次比较相邻的两个元素,当满足左侧大于右侧时…...

ByteBuffer的原理和使用详解

ByteBuffer是字节缓冲区,主要用户读取和缓存字节数据,多用于网络编程,原生的类,存在不好用,Netty采用自己的ByteBuff,对其进行了改进 1.ByteBuffer的2种创建方式 1.ByteBuffer buf ByteBuffer.allocate(i…...

【MySql】10- 实践篇(八)

文章目录 1. 用动态的观点看加锁1.1 不等号条件里的等值查询1.2 等值查询的过程1.3 怎么看死锁?1.4 怎么看锁等待?1.5 update 的例子 2. 误删数据后怎么办?2.1 删除行2.2 误删库/表2.3 延迟复制备库2.4 预防误删库 / 表的方法2.4.1 账号分离2.4.2 制定操…...

【三方登录-Apple】iOS 苹果授权登录(sign in with Apple)之开发者配置一

记录一下sign in with Apple的开发者配置 前言 关于使用 Apple 登录 使用“通过 Apple 登录”可让用户设置帐户并使用其Apple ID登录您的应用程序和关联网站。首先使用“使用 Apple 登录”功能启用应用程序的App ID 。 如果您是首次启用应用程序 ID 或为新应用程序启用应用程序…...

可视化 | 数据可视化降维算法梳理

文章目录 📚数据描述🐇iris🐇MNIST 📚PCA🐇算法流程🐇图像描述 📚Kernel-PCA🐇算法流程🐇图像描述 📚MDS🐇算法流程🐇图像描述 &#…...

分布式:一文吃透分布式事务和seata事务

目录 一、事务基础概念二、分布式事务概念什么是分布式事务分布式事务场景CAP定理CAP理论理解CAPCAP的应用 BASE定理强一致性和最终一致性BASE理论 分布式事务分类刚性事务柔性事务 三、分布式事务解决方案方案汇总XA规范方案1:2PC第一阶段:准备阶段第二…...

Java架构师前沿技术

目录 1 导学2 信息物理系统2.1CPS的体系架构2.2 CPS的技术体系3 人工智能4 机器人5 边缘计算6 数字李生体7 云计算7.1 云计算的部署模式8 大数据想学习架构师构建流程请跳转:Java架构师系统架构设计 1 导学 2 信息物理系统 信息物理系统(CPS)是控制系统、嵌入式系统的扩展与…...

OpenCV ycrcb颜色空间

Opencv中有一个Ycrcb的选项,这个选项其实是Yuv444packet. 下面代码从文件中获取到一个yuv444planar的文件,通过手动转换,将其转为YcrCb,然后进行颜色空间csc. 所以可以确定这是一个packet的存储格式 def yuv444p_2_bgr8_opencv(…...

SPSS两独立样本t检验

前言: 本专栏参考教材为《SPSS22.0从入门到精通》,由于软件版本原因,部分内容有所改变,为适应软件版本的变化,特此创作此专栏便于大家学习。本专栏使用软件为:SPSS25.0 本专栏所有的数据文件请点击此链接下…...

视频格式高效转换:MP4视频批量转MKV格式的方法

随着数字媒体技术的不断发展,视频格式转换已经成为了我们日常工作中不可或缺的一部分。不同的视频格式适用于不同的场景和设备,因此将视频从一种格式转换为另一种格式往往是我们必须完成的任务。在本文中,我们将重点介绍如何运用云炫AI智剪高…...

0028Java程序设计-智能农场监控报警系统设计与实现

文章目录 摘要目 录系统设计开发环境 摘要 我国是一个以农业为主的国家,在当今社会信息化迅速发展的背景下,将信息技术与农业相融合是必然的趋势。现代信息技术在农业生产中的运用,主要体现在两个领域:一是传感器技术&#xff1b…...

数据结构和算法——用C语言实现所有图状结构及相关算法

文章目录 前言图的基本概念图的存储方式邻接矩阵邻接表十字链表临界多重表 图的遍历最小生成树普里姆算法(Prim)克鲁斯卡尔算法(Kruskal) 最短路径BFS求最短路径迪杰斯特拉算法(Dijkstra)弗洛伊德算法&…...

JavaScript一些数据类型介绍

JavaScript一些数据类型介绍 1)数字类型(Number):可以表示整数和浮点数,例如:42、3.14159。 var x 42; // x 的类型是 Number var y 3.14159; // y 的类型是 Number2)字符串类型&#xff08…...

正向代理和反向代理与负载均衡

自存用 什么是反向代理,反向代理与正向代理的区别 一文帮你梳理清楚「正向代理和反向代理的区别与联系」 什么是反向代理服务器 正向代理为用户服务,给用户换个ip使其能访问其他网站 反向代理为服务器服务,使用户访问特定网站服务器。反向代…...

Auto-Coder使用GPT-4o完成:在用TabPFN这个模型构建一个预测未来3天涨跌的分类任务

通过akshare库,获取股票数据,并生成TabPFN这个模型 可以识别、处理的格式,写一个完整的预处理示例,并构建一个预测未来 3 天股价涨跌的分类任务 用TabPFN这个模型构建一个预测未来 3 天股价涨跌的分类任务,进行预测并输…...

CSS设置元素的宽度根据其内容自动调整

width: fit-content 是 CSS 中的一个属性值&#xff0c;用于设置元素的宽度根据其内容自动调整&#xff0c;确保宽度刚好容纳内容而不会超出。 效果对比 默认情况&#xff08;width: auto&#xff09;&#xff1a; 块级元素&#xff08;如 <div>&#xff09;会占满父容器…...

【网络安全】开源系统getshell漏洞挖掘

审计过程&#xff1a; 在入口文件admin/index.php中&#xff1a; 用户可以通过m,c,a等参数控制加载的文件和方法&#xff0c;在app/system/entrance.php中存在重点代码&#xff1a; 当M_TYPE system并且M_MODULE include时&#xff0c;会设置常量PATH_OWN_FILE为PATH_APP.M_T…...

HubSpot推出与ChatGPT的深度集成引发兴奋与担忧

上周三&#xff0c;HubSpot宣布已构建与ChatGPT的深度集成&#xff0c;这一消息在HubSpot用户和营销技术观察者中引发了极大的兴奋&#xff0c;但同时也存在一些关于数据安全的担忧。 许多网络声音声称&#xff0c;这对SaaS应用程序和人工智能而言是一场范式转变。 但向任何技…...

【Elasticsearch】Elasticsearch 在大数据生态圈的地位 实践经验

Elasticsearch 在大数据生态圈的地位 & 实践经验 1.Elasticsearch 的优势1.1 Elasticsearch 解决的核心问题1.1.1 传统方案的短板1.1.2 Elasticsearch 的解决方案 1.2 与大数据组件的对比优势1.3 关键优势技术支撑1.4 Elasticsearch 的竞品1.4.1 全文搜索领域1.4.2 日志分析…...

【C++】纯虚函数类外可以写实现吗?

1. 答案 先说答案&#xff0c;可以。 2.代码测试 .h头文件 #include <iostream> #include <string>// 抽象基类 class AbstractBase { public:AbstractBase() default;virtual ~AbstractBase() default; // 默认析构函数public:virtual int PureVirtualFunct…...

HybridVLA——让单一LLM同时具备扩散和自回归动作预测能力:训练时既扩散也回归,但推理时则扩散

前言 如上一篇文章《dexcap升级版之DexWild》中的前言部分所说&#xff0c;在叠衣服的过程中&#xff0c;我会带着团队对比各种模型、方法、策略&#xff0c;毕竟针对各个场景始终寻找更优的解决方案&#xff0c;是我个人和我司「七月在线」的职责之一 且个人认为&#xff0c…...

协议转换利器,profinet转ethercat网关的两大派系,各有千秋

随着工业以太网的发展&#xff0c;其高效、便捷、协议开放、易于冗余等诸多优点&#xff0c;被越来越多的工业现场所采用。西门子SIMATIC S7-1200/1500系列PLC集成有Profinet接口&#xff0c;具有实时性、开放性&#xff0c;使用TCP/IP和IT标准&#xff0c;符合基于工业以太网的…...

从物理机到云原生:全面解析计算虚拟化技术的演进与应用

前言&#xff1a;我的虚拟化技术探索之旅 我最早接触"虚拟机"的概念是从Java开始的——JVM&#xff08;Java Virtual Machine&#xff09;让"一次编写&#xff0c;到处运行"成为可能。这个软件层面的虚拟化让我着迷&#xff0c;但直到后来接触VMware和Doc…...

yaml读取写入常见错误 (‘cannot represent an object‘, 117)

错误一&#xff1a;yaml.representer.RepresenterError: (‘cannot represent an object’, 117) 出现这个问题一直没找到原因&#xff0c;后面把yaml.safe_dump直接替换成yaml.dump&#xff0c;确实能保存&#xff0c;但出现乱码&#xff1a; 放弃yaml.dump&#xff0c;又切…...