当前位置: 首页 > news >正文

ChatGPT是如何训练得到的?通俗讲解

首先声明喔,我是没有任何人工智能基础的小白,不会涉及算法和底层原理。

我依照我自己的简易理解,总结出了ChatGPT是怎么训练得到的,非计算机专业的同学也应该能看懂。看完后训练自己的min-ChatGPT应该没问题

希望大牛如果看到这篇文章后,就当图一乐。

文章目录

      • ChatGPT名词解释(这里看看就行)
      • ChatGPT是怎么训练得到的?
      • InstructGTP训练流程
        • Step1 以监督学习的方式对GPT3进行微调,得到监督学习模型
        • Step2 训练出一个奖赏模型
        • Step3 训练得到基于PPO算法的强化学习模型
      • 总结
      • 最后说一下我对ChatGPT的理解

ChatGPT名词解释(这里看看就行)

ChatGPT=GPT+人类反馈强化学习

GPT是Generative Pre-trained Transformer(生成预训练变换模型)

  • Generative:生成的意思,因为这是个能生成文本的模型。
  • Pre-trained:预训练的意思,这里代表无监督学习,是没有明确目的的训练方式,你无法提前知道结果是什么,生成文本比较发散。
  • Transformer:变换的意思,代表是模型训练是网络架构,网络里面的各个参数不断变换嘛。

人类反馈强化学习是什么呢?

可以这样理解,模型的训练结果很大程度依赖人类的反馈,人类对其生成的结果进行打分。对打分的结果重新输入的模型中,来对模型进行调整。得分高相当于告诉它:”多生成这样的结果!“。得分低的相当于告诉它:”不要生成这样的结果!“。

ChatGPT是怎么训练得到的?

首先看一下ChatGPT发展时段:

image-20230226103403025

从GPT1到GPT3这个过程,GPT的三个模型几乎都是相同架构,只是有非常非常少量的改动。但一代比一代更大,,也更烧钱.。所以我对GPT系列的特点就是: 钞能力, 大就完事了。 其影响力和花费的成本是成正比的。

模型发布时间参数量预训练数据量
GPT-12018年6月1.17亿约5GB
GPT-22019年2月15亿40G
GPT-32020年5月1750亿45TB

从InstructGPT到ChatGPT没有很大的改动,ChatGPT采用的是InstructGPT的架构,本质上是一样的,只不过采用的训练的数据更多和人类聊天相关,所以变成了"ChatGPT"。

所以,最主要是看InstructGPT怎么通过GPT3来的。

InstructGTP训练流程

我参考了OpenAI发表关于InstructGPT论文:https://arxiv.org/pdf/2203.02155.pdf,分为如下的三步。

理论上讲,只要看懂了训练步骤的这三部分,就可以训练得到我们自己的 ChatGPT

通俗化后如下…,下面我会详细解释每一步。

image-20230226102815219

Step1 以监督学习的方式对GPT3进行微调,得到监督学习模型

首先收集人们在对话中更感兴趣的问题,形成一个问题库,然后不断从数据库中提取一个问题(称为prompt),给到现实生活中的人,让它来做出回答。原论文图片里面的例子是给6岁的儿童解释强化学习,让人工回答完后将问题和回答一起放入到GPT-3.5中进行监督学习,来得到一个生成模型。

每次往模型中输入一个文本,它就是按照训练的数据,给我们输出一个文本。

补充:问题库的来源:

GPT3面世后,OpenAI提供了api,可集成到自己的项目中,用户使用的时候直接采用 prompt的方法做0样本或小样本的预测

下面的代码就是调用OpenAI提供的api,使用的同时,OpenAI会收集prompt数据,研究人员从这些问题(prompt)中采样一部分,人工对这些问题(prompt)做回答,得到的结果称为demonstration即有标签数据,再用这些demonstration继续微调GPT3

import openai
openai.api_key="**********************"
response = openai.Completion.create(model="text-davinci-003",prompt=prompt,temperature=0,max_tokens=100,top_p=1,frequency_penalty=0.0,presence_penalty=0.0,
)
message = response.choices[0].text
print(message)

毫无疑问,第一步通过大量监督学习的方式其实是比较困难的,它消耗很多的资源。**很难找到足够多的人来回答问题很多不同领域的问题,并且有些回答不好评价它的好坏。**因此有了接下来的两步。

Step2 训练出一个奖赏模型

奖赏模型的训练方式,针对同一个问题,让第一步得到监督学习模型给出四个答案。让现实中的人对这四个回答进行排序,对这个排序来进行训练奖赏模型。

虽然我造不出冰箱,但我可以评价一个冰箱的好坏。意思是说,我没有办法像监督学习这样的方式,告诉你冰箱是怎么造的,但是我是冰箱实际上的使用者,我是可以评估冰箱是好还是坏的。就像我没有办法向6岁儿童解释深度学习,但是我可以对生成回答判断是好是坏,就能很轻易的对它们进行排序。

很显然,排序的成本是比直接回答的成本更低的。

补充:为什么需要奖赏模型?

我们需要不断对生成的结果进行排序,来得到人们最满意的回答。人能够对生成的结果进行满意度排序,那我们也希望有模型来对结果排序。

Step3 训练得到基于PPO算法的强化学习模型

PPO算法不用管,只用知道这是人工智能领域一个很厉害的强化学习的算法就行了。深入不讨论。

首先我们还是从数据集里面取出一条问题(prompt),然后放入到强化学习模型里面,得到了一条输出文本。我们对输出的文本进行打分,把打分的结果反馈到强化学习模型中。

这个强化学习模型是基于第一步得到的监督模型得到的,打分的话,是用到第二部得到的奖励模型。

总结

InstructGPT比GPT3有哪些方面的改进?

  1. InstructGPT使用的训练数据,是人们更加经常使用到的,比如:日常的对话,常见的数学、物理知识等等。因此我们使用ChatGPT才能更像对话。****
  2. 引入了强化学习

ChatGPT这次能破圈引起全球讨论,原因是采用了对话形式,让每个普通人都能感受到人工智能技术的强大

最后说一下我对ChatGPT的理解

  1. ChatGPT的出现并不是说OpenAI有多厉害,他们用的技术并不都是原创的技术,甚至很多模型都是行业内开源的,但是他们巧妙地把这些模型融合到了一起。更为关键的是,ChatGPT将模型参数扩大到了1750亿,模型框架没有改变,但是参数有了十倍、百倍的增长,最终量变引发了质变

  2. ChatGPT更准确的定位是个人助手
    它在办公场景里很好用,比如写大纲、写报告、写文章,还有做题,甚至写代码,就算是编程的初学者也能在其帮助下写出高质量的代码。现在,ChatGPT已经具备了一定的逻辑推理能力,未来,在客服、营销、医疗等诸多场景下,只要是重复性的人脑劳动都有可能被ChatGPT取代

参考:

何小枝:https://www.zhihu.com/people/who-u

周总:https://mp.weixin.qq.com/s/h2IOP3XDJ_RicqiV4l00GQ

相关文章:

ChatGPT是如何训练得到的?通俗讲解

首先声明喔,我是没有任何人工智能基础的小白,不会涉及算法和底层原理。 我依照我自己的简易理解,总结出了ChatGPT是怎么训练得到的,非计算机专业的同学也应该能看懂。看完后训练自己的min-ChatGPT应该没问题 希望大牛如果看到这…...

刷题28-有效的变位词

32-有效的变位词 解题思路: 注意变位词的条件,当两个字符串完全相等或者长度不等时,就不是变位词。 把字符串中的字符映射成整型数组,统计每个字符出现的次数 注意数组怎么初始化: int [] s1new int[26]代码如下&a…...

JavaWeb中异步交互的关键——Ajax

文章目录1,Ajax 概述1.1 作用1.2 同步和异步1.3 案例1.3.1 分析1.3.2 后端实现1.3.3 前端实现2,axios2.1 基本使用2.2 快速入门2.2.1 后端实现2.2.2 前端实现2.3 请求方法别名3,JSON3.1 概述3.2 JSON 基础语法3.2.1 定义格式3.2.2 代码演示3.2.3 发送异步…...

python爬虫常见错误

python爬虫常见错误前言python常见错误1. AttributeError: WebDriver object has no attribute find_element_by_id1. 问题描述2. 解决办法2. selenium:DeprecationWarning: executable_path has been deprecated, please pass in1. 问题描述2. 解决办法3. 下载了包…...

AI_Papers周刊:第三期

CV - 计算机视觉 | ML - 机器学习 | RL - 强化学习 | NLP 自然语言处理 2023.02.20—2023.02.26 文摘词云 Top Papers Subjects: cs.CL 1.LLaMA: Open and Efficient Foundation Language Models 标题:LLaMA:开放高效的基础语言模型 作者&#…...

在win7上用VS2008编译skysip工程

在win7上用VS2008编译skysip工程 1. 安装vs2008及相应的补丁包,主要包含以下安装包: 1.1 VS2008TeamSuite90DayTrialCHSX1429243.iso 1.2 VS2008SP1CHSX1512981.iso 1.3 VS90sp1-KB945140-CHS.exe 2. 安装Windows SDK: 6.0.6001.18000.367-KRMSDK_EN.zip 例如安装路径为…...

python 数据结构习题

旋转图像给定一个nn的二维矩阵表示一个图像。将图像顺时针旋转90度。你必须在原地旋转图像,这意味着你需要直接修改输入的二维矩阵。请不要使用另一个矩阵来旋转图像。例如,给定matrix[[1,2,3],[4,5&#x…...

18、MySQL8其它新特性

文章目录1 MySQL8新特性概述1.1 MySQL8.0 新增特性1.2 MySQL8.0移除的旧特性2 新特性1:窗口函数2.1 使用窗口函数前后对比2.2 窗口函数分类2.3 语法结构2.4 分类讲解1 序号函数2 分布函数3 前后函数4 首尾函数5 其他函数2.5 小 结3 新特性2:公用表表达式…...

【Android笔记79】Android之接口请求库Retrofit的介绍及使用

这篇文章,主要介绍Android之接口请求库Retrofit的介绍及使用。 目录 一、Retrofit接口请求库 1.1、什么是Retrofit 1.2、Retrofit的使用 (1)引入依赖...

蓝桥杯 考勤打卡

问题描述 小蓝负责一个公司的考勤系统, 他每天都需要根据员工刷卡的情况来确定 每个员工是否到岗。 当员工刷卡时, 会在后台留下一条记录, 包括刷卡的时间和员工编号, 只 要在一天中员工刷过一次卡, 就认为他到岗了。 现在小蓝导出了一天中所有员工的刷卡记录, 请将所有到岗…...

逻辑回归

逻辑回归 在分类问题中,要预测的变量y为离散值(y0~1),逻辑回归模型的输出变量范围始终在 0 和 1 之间。 训练集为 {(x(1),y(1)),(x(2),y(2)),...,(x(m),y(m))}\{(x^{(1)},y^{(1)}),(x^{(2)},y^{(2)}),...,(x^{(m)},y^{(m)})\} {…...

CTFer成长之路之Python中的安全问题

Python中的安全问题CTF 1.Python里的SSRF 题目提示 尝试访问到容器内部的 8000 端口和 url path /api/internal/secret 即可获取 flag 访问url: http://f5704bb3-5869-4ecb-9bdc-58b022589224.node3.buuoj.cn/ 回显如下: 通过提示构造payload&…...

SpringBoot知识快速复习

Spring知识快速复习启动器自动装配ConfigurationImport导入组件Conditional条件装配ImportResource导入Spring配置文件ConfigurationProperties配置绑定Lombok简化开发dev-toolsyaml请求和响应处理静态资源规则与定制化请求处理-Rest映射请求处理-常用参数注解使用请求处理-Ser…...

SpringBoot+React博客论坛系统 附带详细运行指导视频

文章目录一、项目演示二、项目介绍三、项目运行截图四、主要代码一、项目演示 项目演示地址: 视频地址 二、项目介绍 项目描述:这是一个基于SpringBootReact框架开发的博客论坛系统。首先,这是一个前后端分离的项目,文章编辑器…...

C++ primer 之 extern

C primer 之 extern什么是声明什么是定义两者有什么区别ertern的作用什么是声明 就是使得名字为程序所知,一个文件如果想使用别处定义的名字就必须包含对那个名字的声明。 什么是定义 负责创建与名字关联的实体。 两者有什么区别 变量声明和声明都规定了变量的…...

Linux 练习二 (VIM编辑器 + GCC编译器 + GDB调试)

文章目录VIM命令思维导图GCC编译器1、GCC编译文件练习2、静态库动态库制作练习将此函数编译成动态库将此函数编译成静态库GCC优化选项 -OnGDB调试命令练习练习一:编写一个程序,通过gdb调试,使用到gdb的b,n,s&#xff0…...

python3 连接数据库 mysql PyMysql

python3PyMysql PyMySQL 是在 Python3.x 版本中用于连接 MySQL 服务器的一个库 , 遵循 Python 数据库 API v2.0 规范 。 PyMySQL 安装 pip install PyMySQLPyMySQL 连接数据库 import pymysql pymysql.Connect(hostlocalhost,port 3306,user root,password **…...

昇腾AI新技能,还能预防猪生病?

国药集团动物保健股份有限公司(简称“国药动保”)是专业从事动物保健产品研发、生产和销售的国家高新技术企业,是国内少数几家具备新产品原创能力的动物保健企业。其中,猪圆环病毒灭活疫苗等市场份额位居行业前列。 “猪圆环病毒…...

模板方法模式(Template Method)

模式结构图 说明 基本方法是模板方法的组成部分。基本方法分为一下三种: 抽象方法 由抽象类声明,由其具体子类实现。C中就是纯虚函数。 具体方法 由抽象类或具体类声明并实现,子类可以进行覆盖也可以继承。C中是虚函数。 钩子方法 由抽象类…...

C C++ typedef的使用

一、为基本数据类型起别名 typedef int myint; myint x 5; "myint"是"int"的别名,可以使用"myint"来代替"int"声明变量,这个很好理解,但是也很少有人这么用吧。 二、为结构体起别名 …...

Laravel框架03:DB类操作数据库

Laravel框架03:DB类操作数据库一、概述二、数据表的创建与配置三、增删改操作1. 增加信息2. 修改数据3. 删除数据四、查询操作1. 取出基本数据2. 取出单行数据3. 获取一个字段的值4. 获取多个字段的值5. 排序6. 分页五、执行任意的SQL语句一、概述 按照MVC的架构&a…...

数据结构期末复习总结(前章)

作者的话 作为一名计算机类的学生,我深知数据结构的重要性。在期末复习前,我希望通过这篇博客给大家一些复习建议。希望能帮助大家夯实数据结构的基础知识,并能够更好地掌握数据结构和算法的应用。 一、绪论 数据:信息的载体&am…...

设计环形队列

文章目录1.思路分析1.1队列空满分析1.2出队分析2.循环队列设计1.思路分析 1.1队列空满分析 首先我们假设一个长度为4的环形队列 队头front 队尾rear 当队列为空时 frontrear 当队列满时 frontrear 所以我们无法判断队列是满的或者空的 因此我们多加入一个空间使队列长度为5&am…...

面向对象之-接口鉴权

1 需求 1.1 需求背景 为了保证接口调用的安全性,我们希望设计实现一个接口调用鉴权功能,只有经过认证之后的系统才能调用我们的接口,没有认证过的系统调用我们的接口会被拒绝。 2 需求分析 2.1 基础分析 对于如何做鉴权这样一个问题&…...

Python 多进程多线程线程池进程池协程

目录 一、线程与进程很简单的介绍 1.1 线程与进程的区别 二、多进程Process 2.1 多进程与多线程的区别 2.2 多进程为啥要使用队列 2.3 控制进程运行顺序 2.3.1 join , 2.3.1 daemon 守护进程 2.4 进程id 2.5 进程 存活状态is_alive() 2.5 实现自定义多…...

【自然语言处理】基于句子嵌入的文本摘要算法实现

基于句子嵌入的文本摘要算法实现人们在理解了文本的含义后,很容易用自己的话对文本进行总结。但在数据过多、缺乏人力和时间的情况下,自动文本摘要则显得至关重要。一般使用自动文本摘要的原因包括: 减少阅读时间根据摘要,选择自…...

fiddler抓包

一、工具介绍Fiddler是一个通过代理的方式来进行抓包工具,运行时会在本地建立一个代理服务,默认地址:127.0.0.1:8888。Fiddler开启之后,配置本机代理,再打开IE浏览器,IE的PROXY会自动变成127.0.0.1:8888&am…...

【Linux】网络套接字编程

前言 在掌握一定的网络基础,我们便可以先从代码入手,利用UDP协议/TCP协议进行编写套接字程序,明白网络中服务器端与客户端之间如何进行连接并且通信的。 目录 一、了解源目的IP、端口、网络字节序、套接字 端口号: 套接字&…...

break与continue关键字

1.概述 不知道大家有没有这样一种感受哈,有的时候容易混淆break语句和continue语句的用法,总是模棱两可,不敢确定自己是否使用正确了。正好,我们本篇的重点就是break和continue关键字的用法。 2.使用场景 Java中为啥会诞生break…...

kafka使用入门案例与踩坑记录

每次用到kafka时都会出现各种奇怪的问题,综合实践,下面汇总下主要操作步骤: Docker镜像形式启动 zookeeper启动 docker run -d --name zookeeper -p 2181:2181 -t wurstmeister/zookeeperkafka启动 docker run --name kafka01 -p 9092:909…...

做网站必须会php吗/seo文章排名优化

一、什么是正则表达式? 正则表达式(regular expression)描述了一种字符串匹配的模式。这种模式,我们可以理解成是一种“规则”。根据这种规则再去匹配符合条件的结果,而匹配的过程就是检索,查找、提取的过程。正则表达式只能对字…...

网站被采集了 一个栏目不收录/网上推广产品哪个网好

合并分支代码,简单操作: 1、切换到master主干代码 2、到git repositories 视图,点击需要合并的分支,例如v1.1.9 点击merge 进行合并 3、然后push to Upstream 进行提交 还有回退上个版本代码Reset 转载于:https://www.cnblogs.com…...

防做网站视频/外贸平台排行榜前十名

原文地址 今天给客户做一个微信端的HTML5的动画页面,页面内有一个视频文件,今天上线,这是前提。刚上线不久,客户的服务器便不堪重负,为了解决问题,我们将该页面的媒体文件放在自己的服务器上。问题来了&…...

数据库端口 wordpress/重庆快速网络推广

文章目录前言一、信噪比是什么?(1)噪声怎么来的?(2)信噪比的公式二、降低信号传输过程中噪声的措施总结前言 有一次在做电路的时候,需要DDS输出小信号的正弦波,比如说20mV&#xff…...

萍乡网站推广/手机seo关键词优化

{*rule !important}这个css规则当今在网页制作的时候的普及已经非常流行了,以前我对它的理解就停留在‘浏览器是否识别阶段’ 而没有真正去研究过,可是现在发生了变化。众所周知,!important这个规则对Ie6.0,Ie7.0和Firefox能写hack&#xff0…...

做网站推广员/营业推广的方式

题意: 有N个女生想跟自己的一个或者多个男生做在一起。然后要你算出最后能够匹配出多少对。 解题思路: 这道题是明显的二分匹配题目。有个强大的算法:匈牙利算法,确实很凶,这算法挺牛叉。 这道题属于单边匹配。 算法的…...