当前位置: 首页 > news >正文

基于MaixBit(K210芯片)的图像识别猜拳手势博弈装置

本文介绍了一种基于嵌入式平台开发的图像识别部署装置,其主要功能包括实现机器与人的“猜拳博弈”,其组成分为三个部分:

  1. 手势检测数据集

  1. 图像识别模型训练

  1. 模型格式部署

  1. maixbit开发板部署

手势检测数据集:本项目的数据集包括三种标签:石头,剪刀,布。数据集采用的是自己采集,自行采集数据集有两个优点:1.对最终的部署于maixbit开发板进行识别更加具有针对性;2.可以任意控制数据集的数量。

如上图所示:maixpy提供了线上的数据集制作平台,进行训练集以及验证集的编写,通过手动标注数据集,由于本项目中所使用的是图像分类的识别模型,不需要进行手动标注。

数据集的样本采集方式使用手机端进行直接的训练样本采集,上传至maixHub的后端服务器,图像样本以及对应的标签。

选取模型进行模型的训练,使用的分类模型为mobilenet,进行数据集的拟合。

踩坑经验:数据集三种标签的样本采集数量应该严格相等,同时尽可能数量多,不低于80张采集样本图片。模型选择方面,仅支持官方推荐的几种模型,也是因为芯片的RAM较小,并且其中固件占据了太多部分的内存。

选择部署方式,本项目最终部署的平台是maixBit开发板,因此适用于nncase的部署方式,如果选择部署于树莓派与安卓平台时,可以选择ncnn的部署方式。

配置项选择全部结束,创建训练任务,日志平台进行训练日志的监控,主要包括损失函数loss的下降趋势监控,以及模型acc准确率的显示等,训练完成的模型进行终端部署相关操作。

maixhub帮助我们实现了一个初步的推理代码,实现部署直接应用模型,即可实现调用maixbit开发进行模型的图像识别。

import sensor, image, lcd, time
import KPU as kpu
import gc, sysinput_size = (224, 224)
labels = ['cloth', 'Scissors', 'Stone']def lcd_show_except(e):import uioerr_str = uio.StringIO()sys.print_exception(e, err_str)err_str = err_str.getvalue()img = image.Image(size=input_size)img.draw_string(0, 10, err_str, scale=1, color=(0xff,0x00,0x00))lcd.display(img)def main(labels = None, model_addr="/sd/m.kmodel", sensor_window=input_size, lcd_rotation=0, sensor_hmirror=False, sensor_vflip=False):sensor.reset()sensor.set_pixformat(sensor.RGB565)sensor.set_framesize(sensor.QVGA)sensor.set_windowing(sensor_window)sensor.set_hmirror(sensor_hmirror)sensor.set_vflip(sensor_vflip)sensor.run(1)lcd.init(type=1)lcd.rotation(lcd_rotation)lcd.clear(lcd.WHITE)if not labels:with open('labels.txt','r') as f:exec(f.read())if not labels:print("no labels.txt")img = image.Image(size=(320, 240))img.draw_string(90, 110, "no labels.txt", color=(255, 0, 0), scale=2)lcd.display(img)return 1try:img = image.Image("startup.jpg")lcd.display(img)except Exception:img = image.Image(size=(320, 240))img.draw_string(90, 110, "loading model...", color=(255, 255, 255), scale=2)lcd.display(img)try:task = Nonetask = kpu.load(model_addr)while(True):img = sensor.snapshot()t = time.ticks_ms()fmap = kpu.forward(task, img)t = time.ticks_ms() - tplist=fmap[:]pmax=max(plist)max_index=plist.index(pmax)img.draw_string(0,0, "%.2f : %s" %(pmax, labels[max_index].strip()), scale=2, color=(255, 0, 0))img.draw_string(0, 200, "t:%dms" %(t), scale=2, color=(255, 0, 0))lcd.display(img)except Exception as e:raise efinally:if not task is None:kpu.deinit(task)if __name__ == "__main__":try:# main(labels=labels, model_addr=0x300000)main(labels=labels, model_addr="/sd/model-26548.kmodel")except Exception as e:sys.print_exception(e)lcd_show_except(e)finally:gc.collect()

maixbit开发使用摄像头以及LCD屏幕进行图像的结果显示,包括实时视频检测的结果以及模型识别的推理时间,进行显示。

maix bit主板示意图如下图所示:

maix bit开发板示意图

maix bit开发板的内部包含KPU神经网络处理器,类似华为的NPU芯片,可以加快模型的推理速度。

目前手上有可以识别石头剪刀布三种手势的模型设备,需要进行人机交互层面的实现工作。

选取上电运行的主界面图片:

具体需要实现的交互功能为根据人的手势,识别其具体的手势类别,再做出相应的手势反应。

主界面的上电运行图片进行实际的切分,分为剪刀图片,石头图片以及布图片:

三种手势图片

图片进行显示预处理,maix bit开发板的显示屏采用的LCD液晶显示屏,其如下图所示:

其显示屏的参数对于项目的区别在于320x240的视频显示分辨率,因此其主界面的图片显示应调整分辨率为320x240的图像分辨率,这里使用的是画图软件,进行图片大小的调整。

部署模型Python代码如下所示:

import sensor, image, lcd, time
import KPU as kpu
import gc, sys
input_size = (224, 224)
labels = ['cloth', 'Scissors', 'Stone']
cloth_pic = "/sd/bu.jpg"
Scissors_pic = "/sd/jian.jpg"
Stone_pic = "/sd/shi.jpg"
def lcd_show_except(e):import uioerr_str = uio.StringIO()sys.print_exception(e, err_str)err_str = err_str.getvalue()img = image.Image(size=input_size)img.draw_string(0, 10, err_str, scale=1, color=(0xff,0x00,0x00))lcd.display(img)
def main(labels = None, model_addr="", sensor_window=input_size, lcd_rotation=0, sensor_hmirror=False, sensor_vflip=False):sensor.reset()sensor.set_pixformat(sensor.RGB565)sensor.set_framesize(sensor.QVGA)sensor.set_windowing(sensor_window)sensor.set_hmirror(sensor_hmirror)sensor.set_vflip(sensor_vflip)sensor.run(1)lcd.init(type=1)lcd.rotation(lcd_rotation)lcd.clear(lcd.WHITE)try:img = image.Image("/sd/start.jpg")lcd.display(img)time.sleep(2)lcd.clear()img = image.Image(size=(320, 240))img.draw_string(80, 110, "Mora Guess Game", color=(255, 255, 255), scale=2)lcd.display(img)time.sleep(2)except Exception:img = image.Image(size=(320, 240))img.draw_string(50, 50, "model exception...", color=(255, 255, 255), scale=2)lcd.display(img)try:task = Nonetask = kpu.load(model_addr)lcd.clear()while(True):img = sensor.snapshot()t = time.ticks_ms()if img is None or img == "":continuefmap = kpu.forward(task, img)t = time.ticks_ms() - tfps = 1000/tplist=fmap[:]pmax=max(plist)max_index=plist.index(pmax);img.draw_string(0,0, "%.2f: %s" %(pmax,labels[max_index].strip()), scale=2, color=(000, 0,255))img.draw_string(0, 200, "fps :%.1f" %(fps), scale=2, color=(0, 0, 255))lcd.display(img,roi=(0, 0, 160, 240), oft=(0, 0))if max_index == 0:Scissors = image.Image(Scissors_pic)lcd.display(Scissors,roi=(0, 0, 160, 240), oft=(160, 0))elif max_index == 1:Stone = image.Image(Stone_pic)lcd.display(Stone,roi=(0, 0, 160, 240), oft=(160, 0))elif max_index == 2:cloth = image.Image(cloth_pic)lcd.display(cloth,roi=(0, 0, 160, 240), oft=(160, 0))except Exception as e:raise efinally:if not task is None:kpu.deinit(task)
if __name__ == "__main__":try:main(labels=labels, model_addr="/sd/model-26548.kmodel")except Exception as e:sys.print_exception(e)lcd_show_except(e)finally:gc.collect()

maix bit可以外接SD卡配置,将进行显示所用的文件为了节约芯片的内存,将LCD屏幕的320x240的屏幕进行一分为二,因此以上三个手势图片分辨率为160x240。

进行视频显示视频流显示与模型处理结果进行分割,针对视频流采集的图片进行预测,进行模型的前向传播,获取各个预测标签对应的概率。获取最大的概率所对应的索引,输出对应的预测标签结果。

博弈操作的逻辑代码如下:

if max_index == 0:Scissors = image.Image(Scissors_pic)lcd.display(Scissors,roi=(0, 0, 160, 240), oft=(160, 0))
elif max_index == 1:Stone = image.Image(Stone_pic)lcd.display(Stone,roi=(0, 0, 160, 240), oft=(160, 0))
elif max_index == 2:cloth = image.Image(cloth_pic)lcd.display(cloth,roi=(0, 0, 160, 240), oft=(160, 0))

将图像识别的标签进行分布为[石头,布,剪刀],通过识别的图片结果,读取sd卡中的图像数据,在半个LCD显示屏进行操作结果的显示,以此类推。

如图为本智能设备的最终识别效果:

以上为MaixBit(K210芯片)的图像识别猜拳手势博弈装置的最终效果,完整源代码通过关注我的公众号“千与编程”,有详细教程。其实这个项目是我一早就很想做的项目,现在也算完整完成了,做一个完整的项目,用编程改变世界加油!

我是千与千寻,我们下期见!

相关文章:

基于MaixBit(K210芯片)的图像识别猜拳手势博弈装置

本文介绍了一种基于嵌入式平台开发的图像识别部署装置,其主要功能包括实现机器与人的“猜拳博弈”,其组成分为三个部分:手势检测数据集图像识别模型训练模型格式部署maixbit开发板部署手势检测数据集:本项目的数据集包括三种标签&…...

leetcode 41~50 学习经历

leetcode 41~50 学习经历41. 缺失的第一个正数42. 接雨水43. 字符串相乘44. 通配符匹配45. 跳跃游戏 II46. 全排列47. 全排列 II48. 旋转图像49. 字母异位词分组50. Pow(x, n)小结41. 缺失的第一个正数 给你一个未排序的整数数组 nums ,请你找出其中没有出现的最小的…...

SQL注入原理及漏洞利用(入门级)

文章目录一、什么是SQL注入漏洞?二、 SQL查询语句三、SQL注入分类数字型(整型)注入字符型注入搜索型注入四、SQL注入漏洞形成原因一、什么是SQL注入漏洞? 攻击者利用Web应用程序对用户输入验证上的疏忽,在输入的数据中…...

2023/2/26 Vue学习笔记 配置代理解决跨域[CORS ]的问题

利用vue的脚手架巧妙的解决ajax跨域的问题 1 我们首先利用springboot服务搭建 注意这里引出了跨域[CORS ]的问题: Access to XMLHttpRequest at http://localhost:5000/getUserInfo from origin http://localhost:8080 has been blocked by CORS policy: No Access-Control-A…...

算法练习--深拷贝与浅拷贝

🎀个人主页:努力学习前端知识的小羊 感谢你们的支持:收藏🎄 点赞🍬 加关注🪐 文章目录算法地址算法题解分析深拷贝与浅拷贝在练习算法时,遇到了深拷贝与浅拷贝的问题,于是就了解了一…...

Wireshark “偷窥”浏览器与服务器三次握手

本文使用的是Wireshark 4.0.3, Java 11 编写简易服务器,客户端使用Chrome浏览器移动端开发或是前、后端开发又或是高大上的云计算都脱离不了网络,离开了网络的计算机就是一个孤岛,快速上手开发、背面试八股文固然有些急功近利,但确…...

基于stm32温湿度采集平台开发

基于stm32温湿度采集平台开发这里记录一下自己以前课设报告,但是论文中图片和文字、公式太多了,懒得粘贴了,需要完整的可q我963_160_156,也可在微信公众号 *高级嵌入式软件* 里回复 *温湿度* 查看完整版文章摘 要关键词第一章 绪论…...

单机模拟kafka分布式集群(演示生产、消费数据过程)

用单机搭建kafka伪分布式集群,其实集群的概念并不复杂 先说明一下,以下的每个服务启动后都需要新开一个终端来启动另外的服务(因为是集群,自然会用多个终端) 首先下载kafka 提取码:dvz4 或者直接去官网下载kafka_2.11-1.0.0.tgz t…...

办公室人员离岗识别检测系统 yolov7

办公室人员离岗识别检测系统根据yolov7网络模型深度学习技术,办公室人员离岗识别检测算法能够7*24小时全天候自动识别人员是否在岗位。YOLOv7 在 5 FPS 到 160 FPS 范围内,速度和精度都超过了所有已知的目标检测器,并在V100 上,30…...

Android从屏幕刷新到View的绘制(一)之 Window、WindowManager和WindowManagerService之间的关系

0. 相关分享 Android从屏幕刷新到View的绘制(一)之 Window、WindowManager和WindowManagerService之间的关系 Android从屏幕刷新到View的绘制(二)之Choreographer、Vsync与屏幕刷新 1. 相关类 WindowManagerService&#xff0c…...

#多源数据融合#:HSI与Lidar

Lidar数据与HSI数据融合应该注意的问题 融合激光雷达(lidar)数据和高光谱数据可以提高地物特征的识别和分类准确性。以下是一些融合这两种数据的注意事项: 数据预处理 由于激光雷达数据和高光谱数据的特点不同,需要对两种数据进…...

android 权限控制与进程隔离

每次介绍说是做系统安全的,面试和领导首先就是说配selinux,实在很无语。虽然权限控制是安全很重要一环。 linux的进程就是系统运行中的程序(process),是正在执行的一个程序或者命令,每一个进程都是一个运行的实体,都有自己的地址空间,并占用一定的系统资源。Linux环境下…...

链表(一):移除链表元素、设计链表等力扣经典链表题目

203.移除链表元素相关题目链接:力扣 - 移除链表元素题目重现给你一个链表的头节点 head 和一个整数 val ,请你删除链表中所有满足 Node.val val 的节点,并返回 新的头节点 。思路链表的删除操作如上图所示,我们需要先找到要删除的…...

计算机网络 第4章 作业1

一、选择题 1. 由网络层负责差错控制与流量控制,使分组按序被递交的传输方式是_________(C) A.电路交换 B.报文交换 C.基于虚电路的分组交换 D.基于数据报的分组交换 2. TCP/IP 参考…...

Redis-Java代码使用示例

在我之前的项目中,使用Redis是我们团队自己封装了一个Redis操作类,但是这只是在Spring提供的RedisTemplate上做了一层封装而已,当时使用不是很熟练,都是一边在网上查资料,一边使用;这篇文章会介绍两种使用方…...

acwing3485最大异或和(trie树,贪心)

给定一个非负整数数列 a,初始长度为 N。 请在所有长度不超过 M 的连续子数组中,找出子数组异或和的最大值。 子数组的异或和即为子数组中所有元素按位异或得到的结果。 注意:子数组可以为空。 输入格式 第一行包含两个整数 N,M。 第二行…...

EasyRecovery16免费的电脑的数据恢复工具

常见的数据恢复有两种方式,第一种方式是找别人恢复,按照市场价来说,数据恢复的价格每次在100-500之间,但这种方式容易使自己设备上的隐私资料泄露出去,不安全。 另一种方式则是自己学会数据恢复的方法,有问…...

银行数字化转型导师坚鹏:平安银行数字化转型—橙E网战略研究

平安银行对公业务数字化转型案例—橙E网战略研究课程背景: 很多银行存在以下问题:不清楚银行对公业务数字化转型能否成功?不知道其它银行对公业务数字化转型的实际做法? 课程特色:用实战案例解读平安银行对公业务…...

tun驱动之open

tun驱动对应的设备文件是:/dev/net/tun,其详细信息如下: crw-rw-rw- 1 root root 10, 200 2月 26 08:05 tun 主次设备号的定义如下: #define MISC_MAJOR 10 #define TUN_MINOR 200 由于tun驱动属于misc设备驱动,因此用…...

计算机网络体系结构

计算机网络体系结构是指计算机网络中各个层次和功能组成的结构体系,它定义了计算机网络中各层次之间的协议和接口,以实现不同类型、不同规模、不同性能的计算机之间的互联和通信,同时提供各种网络服务和应用。计算机网络体系结构通常被分为多…...

Java 8 Stream API 入门到实践详解

一、告别 for 循环&#xff01; 传统痛点&#xff1a; Java 8 之前&#xff0c;集合操作离不开冗长的 for 循环和匿名类。例如&#xff0c;过滤列表中的偶数&#xff1a; List<Integer> list Arrays.asList(1, 2, 3, 4, 5); List<Integer> evens new ArrayList…...

mongodb源码分析session执行handleRequest命令find过程

mongo/transport/service_state_machine.cpp已经分析startSession创建ASIOSession过程&#xff0c;并且验证connection是否超过限制ASIOSession和connection是循环接受客户端命令&#xff0c;把数据流转换成Message&#xff0c;状态转变流程是&#xff1a;State::Created 》 St…...

微软PowerBI考试 PL300-在 Power BI 中清理、转换和加载数据

微软PowerBI考试 PL300-在 Power BI 中清理、转换和加载数据 Power Query 具有大量专门帮助您清理和准备数据以供分析的功能。 您将了解如何简化复杂模型、更改数据类型、重命名对象和透视数据。 您还将了解如何分析列&#xff0c;以便知晓哪些列包含有价值的数据&#xff0c;…...

windows系统MySQL安装文档

概览&#xff1a;本文讨论了MySQL的安装、使用过程中涉及的解压、配置、初始化、注册服务、启动、修改密码、登录、退出以及卸载等相关内容&#xff0c;为学习者提供全面的操作指导。关键要点包括&#xff1a; 解压 &#xff1a;下载完成后解压压缩包&#xff0c;得到MySQL 8.…...

LangFlow技术架构分析

&#x1f527; LangFlow 的可视化技术栈 前端节点编辑器 底层框架&#xff1a;基于 &#xff08;一个现代化的 React 节点绘图库&#xff09; 功能&#xff1a; 拖拽式构建 LangGraph 状态机 实时连线定义节点依赖关系 可视化调试循环和分支逻辑 与 LangGraph 的深…...

TCP/IP 网络编程 | 服务端 客户端的封装

设计模式 文章目录 设计模式一、socket.h 接口&#xff08;interface&#xff09;二、socket.cpp 实现&#xff08;implementation&#xff09;三、server.cpp 使用封装&#xff08;main 函数&#xff09;四、client.cpp 使用封装&#xff08;main 函数&#xff09;五、退出方法…...

goreplay

1.github地址 https://github.com/buger/goreplay 2.简单介绍 GoReplay 是一个开源的网络监控工具&#xff0c;可以记录用户的实时流量并将其用于镜像、负载测试、监控和详细分析。 3.出现背景 随着应用程序的增长&#xff0c;测试它所需的工作量也会呈指数级增长。GoRepl…...

路由基础-路由表

本篇将会向读者介绍路由的基本概念。 前言 在一个典型的数据通信网络中&#xff0c;往往存在多个不同的IP网段&#xff0c;数据在不同的IP网段之间交互是需要借助三层设备的&#xff0c;这些设备具备路由能力&#xff0c;能够实现数据的跨网段转发。 路由是数据通信网络中最基…...

CMS内容管理系统的设计与实现:多站点模式的实现

在一套内容管理系统中&#xff0c;其实有很多站点&#xff0c;比如企业门户网站&#xff0c;产品手册&#xff0c;知识帮助手册等&#xff0c;因此会需要多个站点&#xff0c;甚至PC、mobile、ipad各有一个站点。 每个站点关联的有站点所在目录及所属的域名。 一、站点表设计…...

Java设计模式:责任链模式

一、什么是责任链模式&#xff1f; 责任链模式&#xff08;Chain of Responsibility Pattern&#xff09; 是一种 行为型设计模式&#xff0c;它通过将请求沿着一条处理链传递&#xff0c;直到某个对象处理它为止。这种模式的核心思想是 解耦请求的发送者和接收者&#xff0c;…...