当前位置: 首页 > news >正文

基于深度学习的目标检测算法 计算机竞赛

文章目录

  • 1 简介
  • 2 目标检测概念
  • 3 目标分类、定位、检测示例
  • 4 传统目标检测
  • 5 两类目标检测算法
    • 5.1 相关研究
      • 5.1.1 选择性搜索
      • 5.1.2 OverFeat
    • 5.2 基于区域提名的方法
      • 5.2.1 R-CNN
      • 5.2.2 SPP-net
      • 5.2.3 Fast R-CNN
    • 5.3 端到端的方法
      • YOLO
      • SSD
  • 6 人体检测结果
  • 7 最后

1 简介

🔥 优质竞赛项目系列,今天要分享的是

基于深度学习的目标检测算法

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

2 目标检测概念

普通的深度学习监督算法主要是用来做分类,如图1所示,分类的目标是要识别出图中所示是一只猫。

在ILSVRC(ImageNet Large Scale Visual Recognition
Challenge)竞赛以及实际的应用中,还包括目标定位和目标检测等任务。

其中目标定位是不仅仅要识别出来是什么物体(即分类),而且还要预测物体的位置,位置一般用边框(bounding box)标记,如图2所示。

而目标检测实质是多目标的定位,即要在图片中定位多个目标物体,包括分类和定位。

比如对图3进行目标检测,得到的结果是好几只不同动物,他们的位置如图3中不同颜色的框所示。

在这里插入图片描述

3 目标分类、定位、检测示例

简单来说,分类、定位和检测的区别如下:

  • 分类:是什么?

  • 定位:在哪里?是什么?(单个目标)

  • 检测:在哪里?分别是什么?(多个目标)

目标检测对于人类来说并不困难,通过对图片中不同颜色模块的感知很容易定位并分类出其中目标物体,但对于计算机来说,面对的是RGB像素矩阵,很难从图像中直接得到狗和猫这样的抽象概念并定位其位置,再加上有时候多个物体和杂乱的背景混杂在一起,目标检测更加困难。

但这难不倒科学家们,在传统视觉领域,目标检测就是一个非常热门的研究方向,一些特定目标的检测,比如人脸检测和行人检测已经有非常成熟的技术了。普通的目标检测也有过很多的尝试,但是效果总是差强人意。

4 传统目标检测

传统的目标检测一般使用滑动窗口的框架,主要包括三个步骤:

1 利用不同尺寸的滑动窗口框住图中的某一部分作为候选区域;

2 提取候选区域相关的视觉特征。比如人脸检测常用的Harr特征;行人检测和普通目标检测常用的HOG特征等;

3 利用分类器进行识别,比如常用的SVM模型。

传统的目标检测中,多尺度形变部件模型DPM(Deformable Part Model是出类拔萃的,连续获得VOC(Visual Object
Class)2007到2009的检测冠军,2010年其作者Felzenszwalb
Pedro被VOC授予”终身成就奖”。DPM把物体看成了多个组成的部件(比如人脸的鼻子、嘴巴等),用部件间的关系来描述物体,这个特性非常符合自然界很多物体的非刚体特征。DPM可以看做是HOG+SVM的扩展,很好的继承了两者的优点,在人脸检测、行人检测等任务上取得了不错的效果,但是DPM相对复杂,检测速度也较慢,从而也出现了很多改进的方法。正当大家热火朝天改进DPM性能的时候,基于深度学习的目标检测横空出世,迅速盖过了DPM的风头,很多之前研究传统目标检测算法的研究者也开始转向深度学习。

基于深度学习的目标检测发展起来后,其实效果也一直难以突破。比如文献[6]中的算法在VOC
2007测试集合上的mAP只能30%多一点,文献[7]中的OverFeat在ILSVRC 2013测试集上的mAP只能达到24.3%。2013年R-
CNN诞生了,VOC 2007测试集的mAP被提升至48%,2014年时通过修改网络结构又飙升到了66%,同时ILSVRC
2013测试集的mAP也被提升至31.4%。

R-CNN是Region-based Convolutional Neural
Networks的缩写,中文翻译是基于区域的卷积神经网络,是一种结合区域提名(Region
Proposal)和卷积神经网络(CNN)的目标检测方法。Ross Girshick在2013年的开山之作《Rich Feature Hierarchies
for Accurate Object Detection and Semantic
Segmentation》[1]奠定了这个子领域的基础,这篇论文后续版本发表在CVPR 2014[2],期刊版本发表在PAMI 2015[3]。

其实在R-CNN之前已经有很多研究者尝试用Deep Learning的方法来做目标检测了,包括OverFeat[7],但R-
CNN是第一个真正可以工业级应用的解决方案,这也和深度学习本身的发展类似,神经网络、卷积网络都不是什么新概念,但在本世纪突然真正变得可行,而一旦可行之后再迅猛发展也不足为奇了。

R-CNN这个领域目前研究非常活跃,先后出现了R-CNN[1,2,3,18]、SPP-net[4,19]、Fast R-CNN[14, 20]
、Faster R-CNN[5,21]、R-FCN[16,24]、YOLO[15,22]、SSD[17,23]等研究。Ross
Girshick作为这个领域的开山鼻祖总是神一样的存在,R-CNN、Fast R-CNN、Faster
R-CNN、YOLO都和他有关。这些创新的工作其实很多时候是把一些传统视觉领域的方法和深度学习结合起来了,比如选择性搜索(Selective
Search)和图像金字塔(Pyramid)等。

5 两类目标检测算法

深度学习相关的目标检测方法也可以大致分为两派:

基于区域提名的,如R-CNN、SPP-net、Fast R-CNN、Faster R-CNN、R-FCN;

端到端(End-to-End),无需区域提名的,如YOLO、SSD。

目前来说,基于区域提名的方法依然占据上风,但端到端的方法速度上优势明显,后续的发展拭目以待。

5.1 相关研究

5.1.1 选择性搜索

目标检测的第一步是要做区域提名(Region Proposal),也就是找出可能的感兴趣区域(Region Of Interest,
ROI)。区域提名类似于光学字符识别(OCR)领域的切分,OCR切分常用过切分方法,简单说就是尽量切碎到小的连通域(比如小的笔画之类),然后再根据相邻块的一些形态学特征进行合并。但目标检测的对象相比OCR领域千差万别,而且图形不规则,大小不一,所以一定程度上可以说区域提名是比OCR切分更难的一个问题。

区域提名可能的方法有:

一、滑动窗口。滑动窗口本质上就是穷举法,利用不同的尺度和长宽比把所有可能的大大小小的块都穷举出来,然后送去识别,识别出来概率大的就留下来。很明显,这样的方法复杂度太高,产生了很多的冗余候选区域,在现实当中不可行。

二、规则块。在穷举法的基础上进行了一些剪枝,只选用固定的大小和长宽比。这在一些特定的应用场景是很有效的,比如拍照搜题APP小猿搜题中的汉字检测,因为汉字方方正正,长宽比大多比较一致,因此用规则块做区域提名是一种比较合适的选择。但是对于普通的目标检测来说,规则块依然需要访问很多的位置,复杂度高。

三、选择性搜索。从机器学习的角度来说,前面的方法召回是不错了,但是精度差强人意,所以问题的核心在于如何有效地去除冗余候选区域。其实冗余候选区域大多是发生了重叠,选择性搜索利用这一点,自底向上合并相邻的重叠区域,从而减少冗余。

区域提名并不只有以上所说的三种方法,实际上这块是非常灵活的,因此变种也很多,有兴趣的读者不妨参考一下文献[12]。

选择性搜索的具体算法细节[8]如算法1所示。总体上选择性搜索是自底向上不断合并候选区域的迭代过程。

输入: 一张图片输出:候选的目标位置集合L算法:1: 利用过切分方法得到候选的区域集合R = {r1,r2,,rn}2: 初始化相似集合S = ϕ3: foreach 邻居区域对(ri,rj) do4:     计算相似度s(ri,rj)5:     S = S  ∪ s(ri,rj)6: while S not=ϕ do7:     得到最大的相似度s(ri,rj)=max(S)8:     合并对应的区域rt = ri ∪ rj9:     移除ri对应的所有相似度:S = S\s(ri,r*)10:    移除rj对应的所有相似度:S = S\s(r*,rj)11:    计算rt对应的相似度集合St12:    S = S ∪ St13:    R = R ∪ rt14: L = R中所有区域对应的边框

算法1 选择性搜索算法

从算法不难看出,R中的区域都是合并后的,因此减少了不少冗余,相当于准确率提升了,但是别忘了我们还需要继续保证召回率,因此算法1中的相似度计算策略就显得非常关键了。如果简单采用一种策略很容易错误合并不相似的区域,比如只考虑轮廓时,不同颜色的区域很容易被误合并。选择性搜索采用多样性策略来增加候选区域以保证召回,比如颜色空间考虑RGB、灰度、HSV及其变种等,相似度计算时既考虑颜色相似度,又考虑纹理、大小、重叠情况等。

总体上,选择性搜索是一种比较朴素的区域提名方法,被早期的基于深度学习的目标检测方法(包括Overfeat和R-CNN等)广泛利用,但被当前的新方法弃用了。

5.1.2 OverFeat

OverFeat是用CNN统一来做分类、定位和检测的经典之作,作者是深度学习大神之一Yann Lecun在纽约大学的团队。OverFeat也是ILSVRC
2013任务3(分类+定位)的冠军得主。

OverFeat的核心思想有三点:

1 区域提名:结合滑动窗口和规则块,即多尺度(multi-scale)的滑动窗口;

2
分类和定位:统一用CNN来做分类和预测边框位置,模型与AlexNet[12]类似,其中1-5层为特征抽取层,即将图片转换为固定维度的特征向量,6-9层为分类层(分类任务专用),不同的任务(分类、定位、检测)公用特征抽取层(1-5层),只替换6-9层;

3
累积:因为用了滑动窗口,同一个目标对象会有多个位置,也就是多个视角;因为用了多尺度,同一个目标对象又会有多个大小不一的块。这些不同位置和不同大小块上的分类置信度会进行累加,从而使得判定更为准确。

OverFeat的关键步骤有四步:

1
利用滑动窗口进行不同尺度的区域提名,然后使用CNN模型对每个区域进行分类,得到类别和置信度。从图中可以看出,不同缩放比例时,检测出来的目标对象数量和种类存在较大差异;

在这里插入图片描述
2 利用多尺度滑动窗口来增加检测数量,提升分类效果,如图3所示;

在这里插入图片描述
3 用回归模型预测每个对象的位置,从图4中来看,放大比例较大的图片,边框数量也较多;

在这里插入图片描述

4 边框合并。

在这里插入图片描述
Overfeat是CNN用来做目标检测的早期工作,主要思想是采用了多尺度滑动窗口来做分类、定位和检测,虽然是多个任务但重用了模型前面几层,这种模型重用的思路也是后来R-
CNN系列不断沿用和改进的经典做法。

当然Overfeat也是有不少缺点的,至少速度和效果都有很大改进空间,后面的R-CNN系列在这两方面做了很多提升。

5.2 基于区域提名的方法

主要介绍基于区域提名的方法,包括R-CNN、SPP-net、Fast R-CNN、Faster R-CNN、R-FCN。

5.2.1 R-CNN

如前面所述,早期的目标检测,大都使用滑动窗口的方式进行窗口提名,这种方式本质是穷举法,R-CNN采用的是Selective Search。

以下是R-CNN的主要步骤:

区域提名:通过Selective Search从原始图片提取2000个左右区域候选框;

区域大小归一化:把所有侯选框缩放成固定大小(原文采用227×227);

特征提取:通过CNN网络,提取特征;

分类与回归:在特征层的基础上添加两个全连接层,再用SVM分类来做识别,用线性回归来微调边框位置与大小,其中每个类别单独训练一个边框回归器。

其中目标检测系统的结构如图6所示,注意,图中的第2步对应步骤中的1、2步,即包括区域提名和区域大小归一化。

在这里插入图片描述
Overfeat可以看做是R-CNN的一个特殊情况,只需要把Selective
Search换成多尺度的滑动窗口,每个类别的边框回归器换成统一的边框回归器,SVM换为多层网络即可。但是Overfeat实际比R-
CNN快9倍,这主要得益于卷积相关的共享计算。

事实上,R-CNN有很多缺点:

重复计算:R-CNN虽然不再是穷举,但依然有两千个左右的候选框,这些候选框都需要进行CNN操作,计算量依然很大,其中有不少其实是重复计算;

SVM模型:而且还是线性模型,在标注数据不缺的时候显然不是最好的选择;

训练测试分为多步:区域提名、特征提取、分类、回归都是断开的训练的过程,中间数据还需要单独保存;

训练的空间和时间代价很高:卷积出来的特征需要先存在硬盘上,这些特征需要几百G的存储空间;

慢:前面的缺点最终导致R-CNN出奇的慢,GPU上处理一张图片需要13秒,CPU上则需要53秒[2]。

当然,R-CNN这次是冲着效果来的,其中ILSVRC 2013数据集上的mAP由Overfeat的24.3%提升到了31.4%,第一次有了质的改变。

5.2.2 SPP-net

SPP-net是MSRA何恺明等人提出的,其主要思想是去掉了原始图像上的crop/warp等操作,换成了在卷积特征上的空间金字塔池化层(Spatial
Pyramid Pooling,SPP),如图7所示。为何要引入SPP层
,主要原因是CNN的全连接层要求输入图片是大小一致的,而实际中的输入图片往往大小不一,如果直接缩放到同一尺寸,很可能有的物体会充满整个图片,而有的物体可能只能占到图片的一角。传统的解决方案是进行不同位置的裁剪,但是这些裁剪技术都可能会导致一些问题出现,比如图7中的crop会导致物体不全,warp导致物体被拉伸后形变严重,SPP就是为了解决这种问题的。SPP对整图提取固定维度的特征,再把图片均分成4份,每份提取相同维度的特征,再把图片均分为16份,以此类推。可以看出,无论图片大小如何,提取出来的维度数据都是一致的,这样就可以统一送至全连接层了。SPP思想在后来的R-
CNN模型中也被广泛用到。

在这里插入图片描述

SPP-net的网络结构如图8所示,实质是最后一层卷积层后加了一个SPP层,将维度不一的卷积特征转换为维度一致的全连接输入。

在这里插入图片描述

SPP-net做目标检测的主要步骤为:

1 区域提名:用Selective Search从原图中生成2000个左右的候选窗口;

2 区域大小缩放:SPP-net不再做区域大小归一化,而是缩放到min(w,
h)=s,即统一长宽的最短边长度,s选自{480,576,688,864,1200}中的一个,选择的标准是使得缩放后的候选框大小与224×224最接近;

3 特征提取:利用SPP-net网络结构提取特征;

4 分类与回归:类似R-CNN,利用SVM基于上面的特征训练分类器模型,用边框回归来微调候选框的位置。

SPP-net解决了R-CNN区域提名时crop/warp带来的偏差问题,提出了SPP层,使得输入的候选框可大可小,但其他方面依然和R-
CNN一样,因而依然存在不少问题,这就有了后面的Fast R-CNN。

5.2.3 Fast R-CNN

Fast R-CNN是要解决R-CNN和SPP-net两千个左右候选框带来的重复计算问题,其主要思想为:

1 使用一个简化的SPP层 —— RoI(Region of Interesting) Pooling层,操作与SPP类似;

2 训练和测试是不再分多步:不再需要额外的硬盘来存储中间层的特征,梯度能够通过RoI Pooling层直接传播;此外,分类和回归用Multi-
task的方式一起进行;

3 SVD:使用SVD分解全连接层的参数矩阵,压缩为两个规模小很多的全连接层。

Fast R-CNN的主要步骤如下:

1 特征提取:以整张图片为输入利用CNN得到图片的特征层;

2 区域提名:通过Selective Search等方法从原始图片提取区域候选框,并把这些候选框一一投影到最后的特征层;

3 区域归一化:针对特征层上的每个区域候选框进行RoI Pooling操作,得到固定大小的特征表示;

4 分类与回归:然后再通过两个全连接层,分别用softmax多分类做目标识别,用回归模型进行边框位置与大小微调。

在这里插入图片描述
Fast R-CNN比R-CNN的训练速度(大模型L)快8.8倍,测试时间快213倍,比SPP-net训练速度快2.6倍,测试速度快10倍左右。

在这里插入图片描述

5.3 端到端的方法

介绍端到端(End-to-End)的目标检测方法,这些方法无需区域提名,包括YOLO和SSD。

YOLO

YOLO的全拼是You Only Look
Once,顾名思义就是只看一次,进一步把目标判定和目标识别合二为一,所以识别性能有了很大提升,达到每秒45帧,而在快速版YOLO(Fast
YOLO,卷积层更少)中,可以达到每秒155帧。

网络的整体结构如图所示,针对一张图片,YOLO的处理步骤为:

把输入图片缩放到448×448大小;

运行卷积网络;

对模型置信度卡阈值,得到目标位置与类别。

在这里插入图片描述
网络的模型如图15所示,将448×448大小的图切成S×S的网格,目标中心点所在的格子负责该目标的相关检测,每个网格预测B个边框及其置信度,以及C种类别的概率。YOLO中S=7,B=2,C取决于数据集中物体类别数量,比如VOC数据集就是C=20。对VOC数据集来说,YOLO就是把图片统一缩放到448×448,然后每张图平均划分为7×7=49个小格子,每个格子预测2个矩形框及其置信度,以及20种类别的概率。

在这里插入图片描述
YOLO简化了整个目标检测流程,速度的提升也很大,但是YOLO还是有不少可以改进的地方,比如S×S的网格就是一个比较启发式的策略,如果两个小目标同时落入一个格子中,模型也只能预测一个;另一个问题是Loss函数对不同大小的bbox未做区分。

SSD

SSD[17,23]的全拼是Single Shot MultiBox
Detector,冲着YOLO的缺点来的。SSD的框架如图16所示,图16(a)表示带有两个Ground
Truth边框的输入图片,图16(b)和©分别表示8×8网格和4×4网格,显然前者适合检测小的目标,比如图片中的猫,后者适合检测大的目标,比如图片中的狗。在每个格子上有一系列固定大小的Box(有点类似前面提到的Anchor
Box),这些在SSD称为Default Box,用来框定目标物体的位置,在训练的时候Ground
Truth会赋予给某个固定的Box,比如图16(b)中的蓝框和图16©中的红框

在这里插入图片描述
SSD的网络分为两部分,前面的是用于图像分类的标准网络(去掉了分类相关的层),后面的网络是用于检测的多尺度特征映射层,从而达到检测不同大小的目标。SSD和YOLO的网络结构对比如图17所示。

在这里插入图片描述
SSD在保持YOLO高速的同时效果也提升很多,主要是借鉴了Faster
R-CNN中的Anchor机制,同时使用了多尺度。但是从原理依然可以看出,Default
Box的形状以及网格大小是事先固定的,那么对特定的图片小目标的提取会不够好。

6 人体检测结果

在这里插入图片描述
在这里插入图片描述

7 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

相关文章:

基于深度学习的目标检测算法 计算机竞赛

文章目录 1 简介2 目标检测概念3 目标分类、定位、检测示例4 传统目标检测5 两类目标检测算法5.1 相关研究5.1.1 选择性搜索5.1.2 OverFeat 5.2 基于区域提名的方法5.2.1 R-CNN5.2.2 SPP-net5.2.3 Fast R-CNN 5.3 端到端的方法YOLOSSD 6 人体检测结果7 最后 1 简介 &#x1f5…...

前端面试题之CSS篇

1、css选择器及其优先级 标签选择器: 1类选择器、属性选择器、伪类选择器:10id选择器:100内联选择器(style“”):1000!important:10000 2、display的属性值及其作用 属性值作用none元素不显示&#xff0c…...

【SQL相关实操记录】

一. 两张表的联合查询 task表中含 id(任务的序列号), action(任务内容), owner(任务分配的对象), target_date(目标完成日期), status(任务的完成状态),mmid(对应meeting的序列号--表示在该meeting中所对应布置的任务). meeting表中含id(meeting的序列号), status(meeting记…...

Python爬虫实战-批量爬取下载网易云音乐

大家好,我是python222小锋老师。前段时间卷了一套 Python3零基础7天入门实战https://blog.csdn.net/caoli201314/article/details/1328828131小时掌握Python操作Mysql数据库之pymysql模块技术https://blog.csdn.net/caoli201314/article/details/133199207一天掌握p…...

LeetCode 面试题 16.14. 最佳直线

文章目录 一、题目二、C# 题解 一、题目 给定一个二维平面及平面上的 N 个点列表 Points,其中第 i 个点的坐标为 Points[i][Xi,Yi]。请找出一条直线,其通过的点的数目最多。 设穿过最多点的直线所穿过的全部点编号从小到大排序的列表为 S,你仅…...

Spring Boot创建多模块项目

创建一个普通的Spring Boot项目, 然后只留下 pom.xml 剩下的都删掉 删除多余标签 标识当前为父模块 创建子模块 删除子模块中多余标签 声明父模块 在父模块中声明子模块...

Node.js、Chrome V8 引擎、非阻塞式I/O介绍

目录 Node.js介绍Chrome V8 引擎介绍非阻塞式I/O介绍 👍 点赞,你的认可是我创作的动力! ⭐️ 收藏,你的青睐是我努力的方向! ✏️ 评论,你的意见是我进步的财富! Node.js介绍 Node.js 是一个…...

企业服务总线ESB有什么作用?和微服务有什么区别?会如何发展?

企业服务总线ESB是什么 下面这张图,稍微了解些IT集成的朋友应该不陌生。 随着信息化发展不断深入,企业在不同的阶段引入了不同的应用、系统和软件。这些原始的应用系统互不连通,如同一根根独立的烟囱。 但是企业业务是流程化的,…...

NLP之LSTM原理剖析

文章目录 背景simpleRNN的局限性 LSTM手写一下sigmoid例子支持长记忆的神经网络解读3重门 背景 SimpleRNN有一定局限性, 图片上的文字内容: 图片标题提到“SimpleRNN是一种基础模型。它用于解决序列型问题,其中的每一步的输出会影响到下一步的结果。图…...

ESP32网络开发实例-Web方式配置WiFi连接

Web方式配置WiFi连接 文章目录 Web方式配置WiFi连接1、ESP Wi-Fi 管理器介绍2、软件准备3、硬件准备4、代码实现在本文中,我们将介绍如何实现在Web页面中配置ESP32的WiFi连接。 1、ESP Wi-Fi 管理器介绍 ESP32 将在启动时设置为热点模式 连接到充当 AP 的 ESP32 开发板。 在连…...

ElasticSearch 批量插入漏数据

项目场景: 项目中需要把Mysql数据同步到ElasticSearch中 问题描述 数据传输过程中数据不时出现丢失的情况,偶尔会丢失一部分数据,本地测试也无法复现,后台程序也没有报错,一到正式环境就有问题,很崩溃 这里是批量操…...

C++——类和对象之运算符重载

运算符重载 本章思维导图: 注:本章思维导图对应的xmind文件和.png文件都已同步导入至”资源“ 文章目录 运算符重载[toc] 1. 运算符重载的意义2. 函数的声明2.1 声明运算符重载的注意事项 3. 函数的调用4. const成员函数4.1 const成员函数的声明4.2 注意…...

第二阶段第一章——面向对象

前言 学习了这么久Python(呃其实也没多久差不多两周),可能有小伙伴说我废了,两周才学这么点,咋说呢,我曾经也是急于求成,做任何事情都是急于求成,比如我喜欢一个人我就想马上跟她在…...

Linux学习第33天:Linux INPUT 子系统实验(二):Linux 自带按键驱动程序的使用

Linux版本号4.1.15 芯片I.MX6ULL 大叔学Linux 品人间百味 思文短情长 本节笔记主要内容是学会如何使用Linux自带的按键驱动程序。 一、自带按键驱动程序源码简析 配置选项路径如下: -> Device Drivers ->…...

解决Visual Studio 2010 运行时屏幕一闪而过,无结果显示的问题

安装配置:Visual Studio 2010 软件安装教程(附下载链接)——计算机二级专用编程软件https://blog.csdn.net/W_Fe5/article/details/134218817?spm1001.2014.3001.5502 1、 我们在运行时会出现窗口一闪而过,这时候我们右键Test_1…...

C++(20):为[[nodiscard]]提供提示信息

C17中引入了[[nodiscard]]以对一些被忽略的函数返回值进行警告。 C(17):[[nodiscard]]编译属性_[[nodiscard]] c-CSDN博客 C20可以为[[nodiscard]]提供一个可选的提示信息 [[nodiscard("cant ignore")]] int fi() {return 1; }int main() {fi();return 0…...

hi3518ev200 从sd卡启动rootfs

板卡为 hisi 的 hi3518ev200,16M RAM,64M Flash。板卡不支持从SD卡启动,但是由于Flash空间有限,很多应用都放不下,因此考虑把 rootfs 放到 SD 卡中。先从 Flash 中启动 kernel,然后再加载 SD 卡中的 rootfs…...

[BUUCTF NewStar 2023] week5 Crypto/pwn

最后一周几个有难度的题 Crypto last_signin 也是个板子题,不过有些人存的板子没到,所以感觉有难度,毕竟这板子也不是咱自己能写出来的。 给了部分p, p是1024位给了922-101位差两头。 from Crypto.Util.number import * flag b?e 655…...

使用seldom编写http接口用例

在编写接口用例的过程中,针对一个接口,往往只是参数不同,那么参数化就非常有必要了。 seldom 中参数化的用法非常灵活,这里仅介绍file_data() 的N种玩法。 二维列表 当参数比较简单时可以试试下面的方式。 参数化数据 {"…...

Redis中Hash类型的命令

目录 哈希类型的命令 hset hget hexists hdel hkeys hvals hgetall hmget hlen hsetnx hincrby hincrbyfloat 内部编码 Hash类型的应用场景 作为缓存 哈希类型和关系型数据库的两点不同之处 缓存方式对比 Redis自身已经是键值对的结构了,Redis自身的键值对就…...

web vue 项目 Docker化部署

Web 项目 Docker 化部署详细教程 目录 Web 项目 Docker 化部署概述Dockerfile 详解 构建阶段生产阶段 构建和运行 Docker 镜像 1. Web 项目 Docker 化部署概述 Docker 化部署的主要步骤分为以下几个阶段: 构建阶段(Build Stage)&#xff1a…...

idea大量爆红问题解决

问题描述 在学习和工作中,idea是程序员不可缺少的一个工具,但是突然在有些时候就会出现大量爆红的问题,发现无法跳转,无论是关机重启或者是替换root都无法解决 就是如上所展示的问题,但是程序依然可以启动。 问题解决…...

linux arm系统烧录

1、打开瑞芯微程序 2、按住linux arm 的 recover按键 插入电源 3、当瑞芯微检测到有设备 4、松开recover按键 5、选择升级固件 6、点击固件选择本地刷机的linux arm 镜像 7、点击升级 (忘了有没有这步了 估计有) 刷机程序 和 镜像 就不提供了。要刷的时…...

工业自动化时代的精准装配革新:迁移科技3D视觉系统如何重塑机器人定位装配

AI3D视觉的工业赋能者 迁移科技成立于2017年,作为行业领先的3D工业相机及视觉系统供应商,累计完成数亿元融资。其核心技术覆盖硬件设计、算法优化及软件集成,通过稳定、易用、高回报的AI3D视觉系统,为汽车、新能源、金属制造等行…...

.Net Framework 4/C# 关键字(非常用,持续更新...)

一、is 关键字 is 关键字用于检查对象是否于给定类型兼容,如果兼容将返回 true,如果不兼容则返回 false,在进行类型转换前,可以先使用 is 关键字判断对象是否与指定类型兼容,如果兼容才进行转换,这样的转换是安全的。 例如有:首先创建一个字符串对象,然后将字符串对象隐…...

C++.OpenGL (14/64)多光源(Multiple Lights)

多光源(Multiple Lights) 多光源渲染技术概览 #mermaid-svg-3L5e5gGn76TNh7Lq {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-3L5e5gGn76TNh7Lq .error-icon{fill:#552222;}#mermaid-svg-3L5e5gGn76TNh7Lq .erro…...

【分享】推荐一些办公小工具

1、PDF 在线转换 https://smallpdf.com/cn/pdf-tools 推荐理由:大部分的转换软件需要收费,要么功能不齐全,而开会员又用不了几次浪费钱,借用别人的又不安全。 这个网站它不需要登录或下载安装。而且提供的免费功能就能满足日常…...

tauri项目,如何在rust端读取电脑环境变量

如果想在前端通过调用来获取环境变量的值&#xff0c;可以通过标准的依赖&#xff1a; std::env::var(name).ok() 想在前端通过调用来获取&#xff0c;可以写一个command函数&#xff1a; #[tauri::command] pub fn get_env_var(name: String) -> Result<String, Stri…...

鸿蒙HarmonyOS 5军旗小游戏实现指南

1. 项目概述 本军旗小游戏基于鸿蒙HarmonyOS 5开发&#xff0c;采用DevEco Studio实现&#xff0c;包含完整的游戏逻辑和UI界面。 2. 项目结构 /src/main/java/com/example/militarychess/├── MainAbilitySlice.java // 主界面├── GameView.java // 游戏核…...

海云安高敏捷信创白盒SCAP入选《中国网络安全细分领域产品名录》

近日&#xff0c;嘶吼安全产业研究院发布《中国网络安全细分领域产品名录》&#xff0c;海云安高敏捷信创白盒&#xff08;SCAP&#xff09;成功入选软件供应链安全领域产品名录。 在数字化转型加速的今天&#xff0c;网络安全已成为企业生存与发展的核心基石&#xff0c;为了解…...