当前位置: 首页 > news >正文

python如何使用gspread读取google在线excel数据?

一、背景

公司使用google在线excel管理测试用例,为了方便把手工测试用到的测试数据用来做自动化用例测试数据,所以就想使用python读取在线excel数据,通过数据驱动方式,完成自动化回归测试,提升手动复制,粘贴的效率。
在这里插入图片描述

二、实现过程

gspread官网

第一步:为项目启用 API 访问
参考链接:enable-api-access
在这里插入图片描述

第二步:将Goog​​le表格分享给client_email
(在凭证json file文件中) ,这应该类似于: id.gserviceaccount.com

第三步:读取表格内容

import gspreaddef google_online_excel_utils():credentials = {"type": "xxx","project_id": "xxx","private_key_id": "xxx","private_key": "xxx","client_email": "xxx","client_id": "xxx","auth_uri": "xxx","token_uri": "xxx","auth_provider_x509_cert_url": "xxx","client_x509_cert_url": "","universe_domain": "xxx"}gc = gspread.service_account_from_dict(credentials)sh = gc.open_by_url("target_url")  # 打开在线excel地址worksheet = sh.worksheet("测试用例") #选择需要打开的sheet页case_data_list = worksheet.get_all_values()  #获取所有信息print(case_data_list)return case_data_listif __name__ == '__main__':google_online_excel_utils()

第四步:实现效果
在这里插入图片描述

三、参考文档

如何使用Python读取和写入Google表格

相关文章:

python如何使用gspread读取google在线excel数据?

一、背景 公司使用google在线excel管理测试用例,为了方便把手工测试用到的测试数据用来做自动化用例测试数据,所以就想使用python读取在线excel数据,通过数据驱动方式,完成自动化回归测试,提升手动复制,粘…...

线程同步——互斥量解锁、解锁

类似与进程间通信信号量的加锁解锁。 对互斥量进行加锁后,任何其他试图在此对互斥量加锁的线程都会被阻塞,直到当前线程释放该互斥锁。如果释放互斥锁时有多个线程被阻塞,所有在该互斥锁上的阻塞线程都会变成可运行状态,第一个变…...

数据结构(c语言版) 顺序表

代码 #include <stdio.h> #include <stdlib.h>typedef int E; //这里我们的元素类型就用int为例吧&#xff0c;先起个别名//定义结构体 struct List{E * array;int capacity; //数组的容量int size; };//给结构体指针起别名 typedef struct List * ArrayLis…...

Springboot 集成 RocketMq(入门)

1.RocketMq安装部署 Linux 安装 RocketMq-CSDN博客 2.添加依赖包 <dependency><groupId>org.apache.rocketmq</groupId><artifactId>rocketmq-spring-boot-starter</artifactId><version>2.2.3</version> </dependency> 3.配…...

Elasticsearch:ES|QL 中的数据丰富

在之前的文章 “Elasticsearch&#xff1a;ES|QL 查询语言简介”&#xff0c;我有介绍 ES|QL 的 ENRICH 处理命令。ES|QL ENRICH 处理命令在查询时将来自一个或多个源索引的数据与 Elasticsearch 丰富索引中找到的字段值组合相结合。这个有点类似于关系数据库查询中所使用的 jo…...

【linux编程】linux文件IO高级I/O函数介绍和代码示例

Linux文件IO高级I/O函数用法是指如何使用这些函数来实现高效和灵活的文件读写操作,它们包括以下几类: 分散读和集中写:readv和writev函数可以一次性地从一个文件描述符读取或写入多个缓冲区,而不需要多次调用read或write函数。这样可以减少系统调用的开销,提高I/O效率。存…...

jQuery获取地址栏GET参数值

jQuery获取地址栏GET参数值 封装方法&#xff1a; window.location 是获取当前页面地址 // 获取地址栏参数 function GetUrlString(name){var reg new RegExp("(^|&)" name "([^&]*)(&|$)");var r window.location.search.substr(1).match…...

JAVA应用中线程池设置多少合适?

目录 1、机器配置&#xff1a; 2、核心线程数 3、最大线程数多少合适&#xff1f; 4、理论基础 5、测试验证 一个线程跑满一个核心的利用率 6个线程 12 个线程&#xff1a;所有核的cpu利用率都跑满 有io操作 6、计算公式 7、决定最大线程数的流程&#xff1a; 1、机器…...

.Net Core 3.1 解决数据大小限制

微软官网文档上对.NET Core3.1解决数据大小限制有详细的介绍。下面是根据自己的情况进行的总结&#xff0c;我们可以把.Core项目部署在IIS上&#xff0c;也可以利用Kestrel进行部署。这两种方式处理数据大小限制的方式不一样&#xff0c;具体如下&#xff1a; 一、部署在IIS上…...

【音视频 | opus】opus编码的Ogg封装文件详解

&#x1f601;博客主页&#x1f601;&#xff1a;&#x1f680;https://blog.csdn.net/wkd_007&#x1f680; &#x1f911;博客内容&#x1f911;&#xff1a;&#x1f36d;嵌入式开发、Linux、C语言、C、数据结构、音视频&#x1f36d; &#x1f923;本文内容&#x1f923;&a…...

【微信小程序】自定义组件(一)

自定义组件 组件的创建与引用1、创建组件2、引用组件3、全局引用VS局部引用4、组件和页面的区别 样式1、组件样式隔离2、组件样式隔离的注意点3、stylelsolation的可选值 数据、方法和属性1、data数据2、methods方法3、properties4、data和properties区别5、使用setData修改pr…...

如何通过一条数字人三维动画宣传片,打造出数字文旅

越来越多虚拟人&#xff0c;以文化挖掘者的身份通过数字人三维动画宣传片&#xff0c;打通次元壁&#xff0c;助力文化传播形式创造性转化、创新性表达&#xff0c;赋予文化发展新动能。 如南方都市报民间博物馆文化探寻者“岭梅香”&#xff0c;由一艘在南宋时期失事的沉船“南…...

【MongoDB】索引 - 数组字段的多键索引

数组字段创建索引时&#xff0c;MongoDB会为数组中的每个元素创建索引键&#xff08;多键索引&#xff09;&#xff0c;多键索引支持数组字段的高效查询。 一、准备工作 这里准备一些数据 db.shop.insertMany([{_id: 1, name: "水果店1", fruits: ["apple&qu…...

2023.11.5 关于 Spring 创建 和 使用

目录 创建 Spring 项目 1.创建 Maven 项目 2.添加 Spring 依赖 将 Bean 对象存储到 Spring 容器中 创建 Bean 存储 Bean ApplicationContext 获取 Bean BeanFactory 获取 Bean ApplicationContext 和 BeanFactory 的区别 获取 Bean 的三种方式 根据 Bean id 获取…...

3D目标检测实战 | 图解KITTI数据集评价指标AP R40(附Python实现)

目录 1 准确率和召回率2 P-R曲线的绘制3 AP R11与AP R40标准4 实际案例 1 准确率和召回率 首先给出 T P TP TP、 F P FP FP、 F N FN FN、 T N TN TN的概念 真阳性 True Positive T P TP TP 预测为正(某类)且真值也为正(某类)的样本数&#xff0c;可视为 I o U > I o U t…...

制作一个ros2机器人需要学习的课本(还不全面)

1《C语言》---这个是基础200页左右 2《C》-----500-600页 3《高等数学》-----没有这个无法计算动态电路 4《电路分析》-----没有这个没法设计硬件电路 5《英语5000词汇》最少也得达到美国小学生毕业时候的词汇水平5000词汇量 6《ros1》因为ros2没有一本中文课本---有那么一…...

Qt OpenGL相机系统

文章目录 一、简介二、实现代码三、实现效果参考资料效果展示 一、简介 一直偷懒没有学习OpenGL,乘着这段有点时间重新学习一下OpenGL,做一个简单的小工具,有助于后面理解OSG。我们都知道OpenGL中存在着下面几个坐标空间:模型空间(物体空间)、世界空间、观察空间(或者称…...

英语语音识别,语言评测,语音打分实践与代码实现

项目在这&#xff1a;couldn/speech-evaluation-of-english 详细的可查看项目内的md文档...

【SpringBoot篇】SpringBoot整合Mybatis实战

&#x1f38a;专栏【SpringBoot】 &#x1f354;喜欢的诗句&#xff1a;天行健&#xff0c;君子以自强不息。 &#x1f386;音乐分享【如愿】 &#x1f384;欢迎并且感谢大家指出小吉的问题&#x1f970; 文章目录 &#x1f33a;Spring Boot和MyBatis的好处&#x1f33a;创建工…...

android c++ 硬编码硬解码官方demo

参考&#xff1a; https://fossies.org/linux/opencv/modules/videoio/src/cap_android_mediandk.cpp 代码&#xff1a; // This file is part of OpenCV project.// It is subject to the license terms in the LICENSE file found in the top-level directory// of this d…...

DeepSeek 赋能智慧能源:微电网优化调度的智能革新路径

目录 一、智慧能源微电网优化调度概述1.1 智慧能源微电网概念1.2 优化调度的重要性1.3 目前面临的挑战 二、DeepSeek 技术探秘2.1 DeepSeek 技术原理2.2 DeepSeek 独特优势2.3 DeepSeek 在 AI 领域地位 三、DeepSeek 在微电网优化调度中的应用剖析3.1 数据处理与分析3.2 预测与…...

以下是对华为 HarmonyOS NETX 5属性动画(ArkTS)文档的结构化整理,通过层级标题、表格和代码块提升可读性:

一、属性动画概述NETX 作用&#xff1a;实现组件通用属性的渐变过渡效果&#xff0c;提升用户体验。支持属性&#xff1a;width、height、backgroundColor、opacity、scale、rotate、translate等。注意事项&#xff1a; 布局类属性&#xff08;如宽高&#xff09;变化时&#…...

(二)TensorRT-LLM | 模型导出(v0.20.0rc3)

0. 概述 上一节 对安装和使用有个基本介绍。根据这个 issue 的描述&#xff0c;后续 TensorRT-LLM 团队可能更专注于更新和维护 pytorch backend。但 tensorrt backend 作为先前一直开发的工作&#xff0c;其中包含了大量可以学习的地方。本文主要看看它导出模型的部分&#x…...

深入解析C++中的extern关键字:跨文件共享变量与函数的终极指南

&#x1f680; C extern 关键字深度解析&#xff1a;跨文件编程的终极指南 &#x1f4c5; 更新时间&#xff1a;2025年6月5日 &#x1f3f7;️ 标签&#xff1a;C | extern关键字 | 多文件编程 | 链接与声明 | 现代C 文章目录 前言&#x1f525;一、extern 是什么&#xff1f;&…...

全志A40i android7.1 调试信息打印串口由uart0改为uart3

一&#xff0c;概述 1. 目的 将调试信息打印串口由uart0改为uart3。 2. 版本信息 Uboot版本&#xff1a;2014.07&#xff1b; Kernel版本&#xff1a;Linux-3.10&#xff1b; 二&#xff0c;Uboot 1. sys_config.fex改动 使能uart3(TX:PH00 RX:PH01)&#xff0c;并让boo…...

Element Plus 表单(el-form)中关于正整数输入的校验规则

目录 1 单个正整数输入1.1 模板1.2 校验规则 2 两个正整数输入&#xff08;联动&#xff09;2.1 模板2.2 校验规则2.3 CSS 1 单个正整数输入 1.1 模板 <el-formref"formRef":model"formData":rules"formRules"label-width"150px"…...

深度学习习题2

1.如果增加神经网络的宽度&#xff0c;精确度会增加到一个特定阈值后&#xff0c;便开始降低。造成这一现象的可能原因是什么&#xff1f; A、即使增加卷积核的数量&#xff0c;只有少部分的核会被用作预测 B、当卷积核数量增加时&#xff0c;神经网络的预测能力会降低 C、当卷…...

【VLNs篇】07:NavRL—在动态环境中学习安全飞行

项目内容论文标题NavRL: 在动态环境中学习安全飞行 (NavRL: Learning Safe Flight in Dynamic Environments)核心问题解决无人机在包含静态和动态障碍物的复杂环境中进行安全、高效自主导航的挑战&#xff0c;克服传统方法和现有强化学习方法的局限性。核心算法基于近端策略优化…...

C#中的CLR属性、依赖属性与附加属性

CLR属性的主要特征 封装性&#xff1a; 隐藏字段的实现细节 提供对字段的受控访问 访问控制&#xff1a; 可单独设置get/set访问器的可见性 可创建只读或只写属性 计算属性&#xff1a; 可以在getter中执行计算逻辑 不需要直接对应一个字段 验证逻辑&#xff1a; 可以…...

在Mathematica中实现Newton-Raphson迭代的收敛时间算法(一般三次多项式)

考察一般的三次多项式&#xff0c;以r为参数&#xff1a; p[z_, r_] : z^3 (r - 1) z - r; roots[r_] : z /. Solve[p[z, r] 0, z]&#xff1b; 此多项式的根为&#xff1a; 尽管看起来这个多项式是特殊的&#xff0c;其实一般的三次多项式都是可以通过线性变换化为这个形式…...