当前位置: 首页 > news >正文

软考高项-IT部分

信息化体系

信息化技术应用:龙头

信息资源:核心任务

信息网络:应用基础

信息技术和产业:建设基础

信息化人才:成功之本

信息化法规:保障

信息化趋势

产业信息化、产品信息化、社会生活信息化、国民经济信息化

新型基础设施建设

        2018年召开的中央经济工作会议,首次提出:“加快5G商用步伐,加强人工智能、工业互联网、物联网等新型基础设施建设”,简称“新基建”。“其主要包括5G基建、特高压、城际高速铁路和城际轨道交通,新能源汽车充电桩、大数据中心、人工智能、工业互联网”等七大领域。

        信息基础设施-技术新、融合基础设施-应用新、创新基础设施-平台新

工业互联网

        它既是工业数字化、网络化、智能化转型的基础设施,也是互联网、大数据、人工智能和实体经济深度融合的应用模式,同时也是一种新业态、新产业,将重塑企业形态,供应链和产业链。

        一是推动传统工业转型升级

        二是加快新兴产业培育壮大

        工业互联网是网络强国建设的重要内容。工业互联网平台体系具有四大层级:它以网络为基础,平台为中枢,数据为要素,安全为保障。

        工业互联网平台体系包括边缘层,laaS,PaaS和SaaS四个层级,它有四个主要作用:

  1. 数据汇聚
  2. 建模分析
  3. 知识复用
  4. 应用创新

        车联网系统是一个“端、管、云”三层体系

        两化融合是信息化和工业化的高层次的深度结合,是以信

相关文章:

软考高项-IT部分

信息化体系 信息化技术应用:龙头 信息资源:核心任务 信息网络:应用基础 信息技术和产业:建设基础 信息化人才:成功之本 信息化法规:保障 信息化趋势 产业信息化、产品信息化、社会生活信息化、国民经济信息化 新型基础设施建设 2018年召开的中央经济工作会议,首…...

hugetlb核心组件

1 概述 hugetlb机制是一种使用大页的方法,与THP(transparent huge page)是两种完全不同的机制,它需要: 管理员通过系统接口reserve一定量的大页,用户通过hugetlbfs申请使用大页, 核心组件如下图: 围绕着…...

vscode配置环境变量

首先点击下面这个链接。 sMinGW-w64 - for 32 and 64 bit Windows - Browse Files at SourceForge.net 然后选择Files这个选项 向下移选择下载这个文件 解压完成之后,找到这个文件的bin目录复制路径后,添加到环境变量中 依次点击后打开cmd&#xff0…...

react:封装组件

封装 /components/Pagination.tsx import React from react import { Pagination } from antdconst PaginationWarp ({ total, paramsInfo, setParamsInfo }) > {return (<Paginationtotal{total}current{paramsInfo.page}showSizeChangershowQuickJumperdefaultPageSi…...

基于深度学习的视频多目标跟踪实现 计算机竞赛

文章目录 1 前言2 先上成果3 多目标跟踪的两种方法3.1 方法13.2 方法2 4 Tracking By Detecting的跟踪过程4.1 存在的问题4.2 基于轨迹预测的跟踪方式 5 训练代码6 最后 1 前言 &#x1f525; 优质竞赛项目系列&#xff0c;今天要分享的是 基于深度学习的视频多目标跟踪实现 …...

linux中各种最新网卡2.5G网卡驱动,不同型号的网卡需要不同的驱动,整合各种网卡驱动,包括有线网卡、无线网卡、Wi-Fi热点

linux中各种最新网卡2.5G网卡驱动&#xff0c;不同型号的网卡需要不同的驱动&#xff0c;整合各种网卡驱动&#xff0c;包括有线网卡、无线网卡、自动安装Wi-Fi热点。 最近在做路由器二次开发&#xff0c;现在市面上卖的新设备&#xff0c;大多数都采用了2.5G网卡&#xff0c;…...

asp.net上传文件

第一种方法 前端&#xff1a; <div> 单文件上传 <form enctype"multipart/form-data" method"post" action"upload.aspx"> <input type"file" name"files" /> …...

JavaEE平台技术——预备知识(Web、Sevlet、Tomcat)

JavaEE平台技术——预备知识&#xff08;Web、Sevlet、Tomcat&#xff09; 1. Web基础知识2. Servlet3. Tomcat并发原理 1. Web基础知识 &#x1f192;&#x1f192;上个CSDN我们讲的是JavaEE的这个渊源&#xff0c;实际上讲了两个小时的历史课&#xff0c;给大家梳理了一下&a…...

基础课23——设计客服机器人

根据调查数据显示&#xff0c;使用纯机器人完全替代客服的情况并不常见&#xff0c;人机结合模式的使用更为普遍。在这两种模式中&#xff0c;不满意用户的占比都非常低&#xff0c;不到1%。然而&#xff0c;在满意用户方面&#xff0c;人机结合模式的用户满意度明显高于其他模…...

mybatis在springboot当中的使用

1.当使用Mybatis实现数据访问时&#xff0c;主要&#xff1a; - 编写数据访问的抽象方法 - 配置抽象方法对应的SQL语句 关于抽象方法&#xff1a; - 必须定义在某个接口中&#xff0c;这样的接口通常使用Mapper作为名称的后缀&#xff0c;例如AdminMapper - Mybatis框架底…...

如何处理前端本地存储和缓存

前端本地存储和缓存的处理是一种重要的技术&#xff0c;它可以帮助改善应用程序的性能和用户体验。下面是一些处理前端本地存储和缓存的常用方法&#xff1a; 1. 使用Web Storage API&#xff1a; 这是一种在浏览器中存储数据的方法&#xff0c;包括两种类型&#xff1a;loca…...

导轨式安装压力应变桥信号处理差分信号输入转换变送器0-10mV/0-20mV/0-±10mV/0-±20mV转0-5V/0-10V/4-20mA

主要特性 DIN11 IPO 压力应变桥信号处理系列隔离放大器是一种将差分输入信号隔离放大、转换成按比例输出的直流信号导轨安装变送模块。产品广泛应用在电力、远程监控、仪器仪表、医疗设备、工业自控等行业。此系列模块内部嵌入了一个高效微功率的电源&#xff0c;向输入端和输…...

人体姿态估计和手部姿态估计任务中神经网络的选择

一、人体姿态估计任务适合使用卷积神经网络&#xff08;CNN&#xff09;来解决。 人体姿态估计任务的目标是从给定的图像或视频中推断出人体的关节位置和姿势。这是一个具有挑战性的计算机视觉任务&#xff0c;而CNN在处理图像数据方面表现出色。 使用CNN进行人体姿态估计的一种…...

odoo16 one2many字段的 domain

最近在odoo project模块的基础上做二开&#xff0c;给task表加了一个版本字段version_id&#xff0c;然后重写了 project表的Task_ids, 并且增加了一个domain&#xff0c;结果折腾了大半天才搞定 写法1 这也是最初的写法&#xff1a; version_id fields.Many2one("hx.p…...

一份优秀测试用例的设计策略

日常工作中最为基础核心的内容就是设计测试用例&#xff0c;什么样的测试用例是好的测试用例?我们一般会认为数量越少、发现缺陷越多的用例就是好的用例。那么我们如何才能设计出好的测试用例呢&#xff1f;一份好的用例是设计出来的&#xff0c;是测试人员思路和方法的集合&a…...

自动驾驶行业观察之2023上海车展-----智驾供应链(3)

智驾解决方案商发展 华为&#xff1a;五项重磅技术更新&#xff0c;重点发布华为ADS 2.0和鸿蒙OS 3.0 1&#xff09;产品方案&#xff1a;五大解决方案都有了全面的升级&#xff0c;分别推出了ADS 2.0、鸿蒙OS 3.0、iDVP智能汽车数字平台、智能车云服务和华为车载光最新 产品…...

倒计时丨3天后,我们直播间见!

倒计时3天&#xff0c;RestCloud 零代码集成自动化平台重磅发布 ⏰11 月 9 日 14:00&#xff0c;期待您的参与&#xff01; 点击报名&#xff1a;http://c.nxw.so/dfaJ9...

c语言经典算法—二分查找,冒泡,选择,插入,归并,快排,堆排

一、二分查找 1、前提条件&#xff1a;数据有序&#xff0c;随机访问&#xff1b; 2、实现&#xff1a;递归实现&#xff0c;非递归实现 3、注意事项&#xff1a; 循环退出条件:low <high,low high.说明还有一个元素&#xff0c;该元素还要与key进行比较 mid的取值&#xf…...

网站SSL证书有什么用

在当今&#xff0c;网站安全对于企业和个人来说至关重要。其中&#xff0c;SSL证书在保护网站和用户数据方面发挥着关键作用。 1&#xff0c;数据加密保护&#xff1a;SSL证书通过使用加密技术&#xff0c;将网站与访问者之间的通信进行加密。这意味着通过SSL保护的网站上的数据…...

ubuntu 20.04 server安装

ubuntu 20.04 server安装 ubuntu-20.04.6-live-server-amd64.iso 安装 安装ubuntu20.04 TLS系统后&#xff0c;开机卡在“A start job is running for wait for network to be Configured”等待连接两分多钟。 cd /etc/systemd/system/network-online.target.wants/在[Servi…...

FFmpeg 低延迟同屏方案

引言 在实时互动需求激增的当下&#xff0c;无论是在线教育中的师生同屏演示、远程办公的屏幕共享协作&#xff0c;还是游戏直播的画面实时传输&#xff0c;低延迟同屏已成为保障用户体验的核心指标。FFmpeg 作为一款功能强大的多媒体框架&#xff0c;凭借其灵活的编解码、数据…...

Cilium动手实验室: 精通之旅---20.Isovalent Enterprise for Cilium: Zero Trust Visibility

Cilium动手实验室: 精通之旅---20.Isovalent Enterprise for Cilium: Zero Trust Visibility 1. 实验室环境1.1 实验室环境1.2 小测试 2. The Endor System2.1 部署应用2.2 检查现有策略 3. Cilium 策略实体3.1 创建 allow-all 网络策略3.2 在 Hubble CLI 中验证网络策略源3.3 …...

Golang dig框架与GraphQL的完美结合

将 Go 的 Dig 依赖注入框架与 GraphQL 结合使用&#xff0c;可以显著提升应用程序的可维护性、可测试性以及灵活性。 Dig 是一个强大的依赖注入容器&#xff0c;能够帮助开发者更好地管理复杂的依赖关系&#xff0c;而 GraphQL 则是一种用于 API 的查询语言&#xff0c;能够提…...

Python爬虫(二):爬虫完整流程

爬虫完整流程详解&#xff08;7大核心步骤实战技巧&#xff09; 一、爬虫完整工作流程 以下是爬虫开发的完整流程&#xff0c;我将结合具体技术点和实战经验展开说明&#xff1a; 1. 目标分析与前期准备 网站技术分析&#xff1a; 使用浏览器开发者工具&#xff08;F12&…...

css的定位(position)详解:相对定位 绝对定位 固定定位

在 CSS 中&#xff0c;元素的定位通过 position 属性控制&#xff0c;共有 5 种定位模式&#xff1a;static&#xff08;静态定位&#xff09;、relative&#xff08;相对定位&#xff09;、absolute&#xff08;绝对定位&#xff09;、fixed&#xff08;固定定位&#xff09;和…...

ArcGIS Pro制作水平横向图例+多级标注

今天介绍下载ArcGIS Pro中如何设置水平横向图例。 之前我们介绍了ArcGIS的横向图例制作&#xff1a;ArcGIS横向、多列图例、顺序重排、符号居中、批量更改图例符号等等&#xff08;ArcGIS出图图例8大技巧&#xff09;&#xff0c;那这次我们看看ArcGIS Pro如何更加快捷的操作。…...

今日学习:Spring线程池|并发修改异常|链路丢失|登录续期|VIP过期策略|数值类缓存

文章目录 优雅版线程池ThreadPoolTaskExecutor和ThreadPoolTaskExecutor的装饰器并发修改异常并发修改异常简介实现机制设计原因及意义 使用线程池造成的链路丢失问题线程池导致的链路丢失问题发生原因 常见解决方法更好的解决方法设计精妙之处 登录续期登录续期常见实现方式特…...

10-Oracle 23 ai Vector Search 概述和参数

一、Oracle AI Vector Search 概述 企业和个人都在尝试各种AI&#xff0c;使用客户端或是内部自己搭建集成大模型的终端&#xff0c;加速与大型语言模型&#xff08;LLM&#xff09;的结合&#xff0c;同时使用检索增强生成&#xff08;Retrieval Augmented Generation &#…...

python报错No module named ‘tensorflow.keras‘

是由于不同版本的tensorflow下的keras所在的路径不同&#xff0c;结合所安装的tensorflow的目录结构修改from语句即可。 原语句&#xff1a; from tensorflow.keras.layers import Conv1D, MaxPooling1D, LSTM, Dense 修改后&#xff1a; from tensorflow.python.keras.lay…...

使用Matplotlib创建炫酷的3D散点图:数据可视化的新维度

文章目录 基础实现代码代码解析进阶技巧1. 自定义点的大小和颜色2. 添加图例和样式美化3. 真实数据应用示例实用技巧与注意事项完整示例(带样式)应用场景在数据科学和可视化领域,三维图形能为我们提供更丰富的数据洞察。本文将手把手教你如何使用Python的Matplotlib库创建引…...