当前位置: 首页 > news >正文

医疗行业网站怎么做/块链友情链接平台

医疗行业网站怎么做,块链友情链接平台,怎么做简单地网站,长沙企业网站开发哪家专业COMAP比赛中的大型语言模型和生成式人工智能工具的使用 写在最前面GitHub Copilot工具 说明局限性 团队指南引文和引用说明人工智能使用报告 英文原版 Use of Large Language Models and Generative AI Tools in COMAP ContestslimitationsGuidance for teamsCitation and Refe…

COMAP比赛中的大型语言模型和生成式人工智能工具的使用

  • 写在最前面
    • GitHub Copilot工具
  • 说明
    • 局限性
  • 团队指南
  • 引文和引用说明
    • 人工智能使用报告
  • 英文原版 Use of Large Language Models and Generative AI Tools in COMAP Contests
    • limitations
    • Guidance for teams
    • Citation and Referencing Directions
    • Report on Use of AI

写在最前面

COMAP竟然已经开始规范LLM的使用了,估计2024的美赛也会有这个说明
在这里插入图片描述
详情可见:https://www.contest.comap.com/undergraduate/contests/mcm/flyer/Contest_AI_Policy.pdf

GitHub Copilot工具

和昨天介绍的论文不谋而合,【网安AIGC专题11.1】论文12:理解和解释代码,GPT-3大型语言模型&学生创建的代码解释比较+错误代码的解释(是否可以发现并改正)
将重点从编写代码转移到理解代码的目的、评估生成的代码是否合适以及根据需要修改代码,从而使代码理解成为一项更加重要的技能。
值得注意的是,LLM 不仅可以帮助学生生成代码,还可以通过创建代码解释(可用作代码理解练习)来帮助学生理解代码。

说明

该政策旨在应对大型语言模型(LLM)和生成式人工智能辅助技术的兴起。该政策旨在为团队、顾问和评委提供更大的透明度和指导。该政策适用于学生工作的所有方面,从模型的研究和开发(包括代码创建)到书面报告。由于这些新兴技术发展迅速,COMAP将根据情况完善本政策。

团队必须公开、诚实地使用人工智能工具。团队及其提交材料越透明,他们的工作就越有可能被他人充分信任、欣赏和正确使用。这些披露有助于了解智力成果的开发情况,并适当承认贡献。如果没有公开、明确地引用和参考人工智能工具的作用,很可能会发现有问题的段落和工作被认定为抄袭并被取消资格。

解决这些问题不需要使用人工智能工具,尽管可以负责任地使用它们。COMAP认识到大型语言模型和生成式人工智能的价值,它们是生产力工具,可以帮助团队准备提交材料,例如生成结构的初步想法,或进行总结、改写、润色等。在模型开发中有许多任务需要人类的创造力和团队合作,依赖人工智能工具会带来风险。因此,我们建议在使用这些技术进行模型选择和构建、协助编写代码、解释数据和模型结果以及得出科学结论时要谨慎。

局限性

值得注意的是,LLM和生成式人工智能有其局限性,无法取代人类的创造力和批判性思维。COMAP建议团队在选择使用LLM时要了解这些风险:

  1. 客观性:以前发表的内容包含种族主义、性别歧视或其他偏见,这些内容可能在LLM生成的文本中出现,并且一些重要的观点可能没有得到体现。
  2. 准确性:LLM可以“幻觉”,即生成虚假内容,特别是当它们在其领域之外使用或处理复杂或模糊的主题时。它们可以生成在语言上但不在科学上合理的文本,它们可能出错,并且它们被证明可以生成不存在的引用。一些LLM仅在特定日期之前发布的内容上进行训练,因此呈现不完整的画面。
  3. 上下文理解:LLM不能将人类理解应用于文本的上下文,特别是当处理习惯用语、讽刺、幽默或隐喻语言时。这可能导致生成的内容出现错误或误解。
  4. 训练数据:LLM需要大量高质量的训练数据以实现最佳性能。然而,在一些领域或语言中,可能没有现成可用的这种数据,从而限制了任何输出的有用性。

团队指南

各团队必须:

  1. 在报告中明确指出LLM或其他AI工具的使用情况,包括使用哪个模型以及使用目的。请使用内联引文和参考部分。另外,请将“AI使用情况报告”(如下所述)附在您的25页解决方案之后。
  2. 验证语言模型生成的内容和引用的准确性、有效性和适当性,并纠正任何错误或不一致之处。
  3. 按照此处提供的指导提供引用和参考文献。仔细检查引用,确保其准确且适当引用。
  4. 要注意潜在的剽窃风险,因为LLMs可能会复制其他来源的大量文本。请检查原始来源,确保自己没有剽窃他人的作品。

当我们发现提交的作品可能是在未公开使用此类工具的情况下准备的,COMAP将采取适当行动。

引文和引用说明

仔细思考如何记录和引用团队可能选择使用的任何工具。各种风格指南开始纳入对AI工具引用的政策。使用内联引用,并在参考部分列出您25页解决方案中使用的所有AI工具。

无论团队是否选择使用人工智能工具,主要解决方案报告仍限制为25页。如果团队选择使用人工智能,在报告结束后,添加一个名为“AI使用情况报告”的新部分。这个新部分没有页数限制,也不计入25页解决方案的一部分。

例子(这些例子不全面——请根据您的情况修改这些例子):

人工智能使用报告

1.OpenAI ChatGPT (2023115日版,ChatGPT-4)
提问1: <请提供一份关于人工智能使用情况的报告>。
回答: <以下是一份关于人工智能使用情况的报告>2. OpenAI Ernie(2023115日版,Ernie 4.0)
提问1: <请提供一份关于人工智能使用情况的报告>。
回答: <以下是一份关于人工智能使用情况的报告>3. GitHub Copilot(202423日版本)
提问1: <请提供一份关于人工智能使用情况的报告>。
回答: <以下是一份关于人工智能使用情况的报告>4. Google Bard(202422日版)
提问1: <请提供一份关于人工智能使用情况的报告>。
回答: <以下是一份关于人工智能使用情况的报告>

英文原版 Use of Large Language Models and Generative AI Tools in COMAP Contests

This policy is motivated by the rise of large language models (LLMs) and generative AI assisted technologies. The policy aims to provide greater transparency and guidance to teams, advisors, and judges. This policy applies to all aspects of student work, from research and development of models (including code creation) to the written report. Since these emerging technologies are quickly evolving, COMAP will refine this policy as appropriate.

Teams must be open and honest about all their uses of AI tools. The more transparent a team and its submission are, the more likely it is that their work can be fully trusted, appreciated, and correctly used by others. These disclosures aid in understanding the development of intellectual work and in the proper acknowledgement of contributions. Without open and clear citations and references of the role of AI tools, it is more likely that questionable passages and work could be identified as plagiarism and disqualified.

Solving the problems does not require the use of AI tools, although their responsible use is permitted. COMAP recognizes the value of LLMs and generative AI as productivity tools that can help teams in preparing their submission; to generate initial ideas for a structure, for example, or when summarizing, paraphrasing, language polishing etc. There are many tasks in model development where human creativity and teamwork is essential, and where a reliance on AI tools introduces risks. Therefore, we advise caution when using these technologies for tasks such as model selection and building, assisting in the creation of code, interpreting data and results of models, and drawing scientific conclusions.

limitations

It is important to note that LLMs and generative AI have limitations and are unable to replace human creativity and critical thinking. COMAP advises teams to be aware of these risks if they choose to use LLMs:

• Objectivity: Previously published content containing racist, sexist, or other biases can arise in LLM-generated text, and some important viewpoints may not be represented.
• Accuracy: LLMs can ‘hallucinate’ i.e. generate false content, especially when used outside of their domain or when dealing with complex or ambiguous topics. They can generate content that is linguistically but not scientifically plausible, they can get facts wrong, and they have been shown to generate citations that don’t exist. Some LLMs are only trained on content published before a particular date and therefore present an incomplete picture.
• Contextual understanding: LLMs cannot apply human understanding to the context of a piece of text, especially when dealing with idiomatic expressions, sarcasm, humor, or metaphorical language. This can lead to errors or misinterpretations in the generated content.
• Training data: LLMs require a large amount of high-quality training data to achieve optimal performance. In some domains or languages, however, such data may not be readily available, thus limiting the usefulness of any output.

Guidance for teams

Teams are required to:

  1. Clearly indicate the use of LLMs or other AI tools in their report, including which model was used and for what purpose. Please use inline citations and the reference section. Also append the Report on Use of AI (described below) after your 25-page solution.
  2. Verify the accuracy, validity, and appropriateness of the content and any citations generated by language models and correct any errors or inconsistencies.
  3. Provide citation and references, following guidance provided here. Double-check citations to ensure they are accurate and are properly referenced.
  4. Be conscious of the potential for plagiarism since LLMs may reproduce substantial text from other sources. Check the original sources to be sure you are not plagiarizing someone else’s work.

COMAP will take appropriate action
when we identify submissions likely prepared with undisclosed use of such tools.

Citation and Referencing Directions

Think carefully about how to document and reference whatever tools the team may choose to use. A variety of style guides are beginning to incorporate policies for the citation and referencing of AI tools. Use inline citations and list all AI tools used in the reference section of your 25-page solution.

Whether or not a team chooses to use AI tools, the main solution report is still limited to 25 pages. If a team chooses to utilize AI, following the end of your report, add a new section titled Report on Use of AI. This new section has no page limit and will not be counted as part of the 25-page solution.

Examples (this is not exhaustive – adapt these examples to your situation):

Report on Use of AI

1.	OpenAI ChatGPT (Nov 5, 2023 version, ChatGPT-4,) 
Query1: <insert the exact wording you input into the AI tool> 
Output: <insert the complete output from the AI tool>4.	OpenAI Ernie (Nov 5, 2023 version, Ernie 4.0)
Query1: <insert the exact wording of any subsequent input into the AI tool> 
Output: <insert the complete output from the second query>5.	Github CoPilot (Feb 3, 2024 version)
Query1: <insert the exact wording you input into the AI tool> 
Output: <insert the complete output from the AI tool>6.	Google Bard (Feb 2, 2024 version)
Query: <insert the exact wording of your query> 
Output: <insert the complete output from the AI tool>

相关文章:

【2023】COMAP美赛数模中的大型语言模型LLM和生成式人工智能工具的使用

COMAP比赛中的大型语言模型和生成式人工智能工具的使用 写在最前面GitHub Copilot工具 说明局限性 团队指南引文和引用说明人工智能使用报告 英文原版 Use of Large Language Models and Generative AI Tools in COMAP ContestslimitationsGuidance for teamsCitation and Refe…...

数据结构-顺序表学习资料

什么是顺序表&#xff1f; 顺序表是一种线性数据结构&#xff0c;它按照元素在内存中的物理顺序存储数据。顺序表可以通过数组实现&#xff0c;也可以通过链表和动态数组实现。 顺序表的特点 元素连续存储&#xff1a;顺序表中的元素在内存中是连续存储的&#xff0c;这样可…...

微信小程序获取剪切板的内容到输入框中

xml代码 <navigation-bar title"Weixin" back"{{false}}" color"black" background"#FFF"></navigation-bar> <view><input placeholder"请输入内容" name"content" type"text" …...

【年底不想背锅!网络工程师必收藏的排障命令大全】

网络故障排除工具是每个网络工程师的必需品。 为了提升我们的工作效率&#xff0c; 不浪费时间&#xff0c;工具的重要性显而易见 特别是每当添加新的设备或网络发生变更时&#xff0c;新的问题就会出现&#xff0c;而且很难快速确定问题出在哪里。每一位网络工程师或从事网…...

Windows服务器用PowerShell script判断服务器启动时间并做reboot动作

脚本如下&#xff0c;Windows 2019环境 60*119 是119分钟 $x(Get-Date) - (gcim Win32_OperatingSystem).LastBootUpTime echo $x.TotalSeconds " seconds passed" if($x.TotalSeconds -gt 60*119) {Invoke-Expression -Command "msg.exe * /TIME:20 reboot i…...

【HTML】播放器如何自动播放【已解决】

自动播放器策略 先了解浏览器的自动播放器策略 始终允许静音自动播放在以下情况&#xff0c;带声音的自动播放才会被允许 2.1 用户已经与当前域进行交互 2.2 在桌面上&#xff0c;用户的媒体参与指数阈值(MEI)已被越过&#xff0c;这意味着用户以前播放带有声音的视频。 2.3 …...

Go Gin中间件

Gin是一个用Go语言编写的Web框架&#xff0c;它提供了一种简单的方式来创建HTTP路由和处理HTTP请求。中间件是Gin框架中的一个重要概念&#xff0c;它可以用来处理HTTP请求和响应&#xff0c;或者在处理请求之前和之后执行一些操作。 以下是关于Gin中间件开发的一些基本信息&am…...

财务数字化转型的切入点是什么?_光点科技

随着科技的不断进步&#xff0c;数字化转型已经成为各个行业追求的目标&#xff0c;财务领域也不例外。那么&#xff0c;财务数字化转型的切入点在哪里呢&#xff1f;如何确保转型的成功进行&#xff1f; 数据整合与管理 财务数据的准确性与及时性是财务管理的基石。数字化转型…...

Langchain知识点(上)

输出格式 Pydantic (JSON) 解析器 # 创建模型实例 from langchain import OpenAI model OpenAI(model_nametext-davinci-003)# ------Part 2 # 创建一个空的DataFrame用于存储结果 import pandas as pd df pd.DataFrame(columns["flower_type", "price"…...

Tomcat安装配置教程

目录 1、安装tomcat1.1、查看JDK版本1.2、 匹配对应的JDK版本1.3、 下载Tomcat1.3.1、 安装包版&#xff08;推荐&#xff0c;不用配环境&#xff09;1.3.2、 压缩包版 2、 运行Tomcat3、 不能运行问题 1、安装tomcat 1.1、查看JDK版本 由于不同版本tomcat对于jdk的版本有要求…...

Python小试牛刀:GUI(图形界面)实现计算器UI界面(三)

上一篇&#xff1a;Python小试牛刀&#xff1a;GUI&#xff08;图形界面&#xff09;实现计算器UI界面(二)-CSDN博客 回顾前两篇文章&#xff0c;第一篇文章主要实现了计算器UI界面如何布局&#xff0c;以及简单概述Python常用的GUI库。第二篇文章主要实现了计算器UI界面按钮组…...

王道计算机网络

一、计算机网络概述 (一)计算机网络基本概念 计算机网络的定义、组成与功能 定义&#xff1a;以能够相互共享资源的方式互连起来的自治计算机系统的集合。 目的&#xff1a;资源共享&#xff0c; 组成单元&#xff1a;自治、互不影响的计算机 网络协议 从不同角度计算机网络…...

【漏洞复现】IIS_7.o7.5解析漏洞

感谢互联网提供分享知识与智慧&#xff0c;在法治的社会里&#xff0c;请遵守有关法律法规 文章目录 1.1、漏洞描述1.2、漏洞等级1.3、影响版本1.4、漏洞复现1、基础环境2、漏洞扫描3、漏洞验证 1.5、修复建议 1.1、漏洞描述 漏洞原理&#xff1a; cgi.fix_path1 1.png/.php该…...

Java 高效生成按指定间隔连续递增的列表(int,double)

简介 Java 按照指定间隔生成连续递增的List 列表&#xff08;引入Stream 类和流操作来提高效率&#xff09;&#xff1a; 1. 生成递增的List< Integer> Testpublic void test009(){int start 1;int interval 2;int count 10;List<Integer> list IntStream.ite…...

C++ reference

cppreference.com 《现代C语言核心特性解析》 这是一本 C 进阶图书&#xff0c;全书分为 42 章&#xff0c;深入探讨了从 C11 到 C20 引入的核心特性。 本书不仅通过大量的实例代码讲解特性的概念和语法&#xff0c;还从编译器的角度分析特性的实现原理&#xff0c;让读者…...

关于网站安全的一些讨论

互联网的普及和发展为企业和个人提供了巨大的机会&#xff0c;但同时也伴随着网络安全威胁的增加。网站被攻击是一个常见的问题&#xff0c;可能导致数据泄露、服务中断和声誉受损。在本文中&#xff0c;我们将探讨与网络安全紧密相关的因素&#xff0c;分析为什么网站容易受到…...

unity 截图

unity 截图适用于各分辨率 float scr;void Start(){scr Screen.width /2160.00f;//2160是我做程序时的分辨率 Screen.width为打包后机器的分辨率}/// <summary>/// 区域截图/// </summary>/// <param name"rectT"></param>/// <param …...

浏览器无图模式省流量经验

【备注】本文适合于那些用自购上网卡&#xff08;非单位报销&#xff09;、流量费花的心痛、平日里抠抠搜搜的diaosi人群&#xff01;流量自由人群请关闭退出&#xff01; 近日图年包流量费便宜&#xff0c;从某东平台上买了一个号称新款usb上网卡&#xff0c;只用了2天时间&a…...

【Hive】分区表和分桶表相关知识点介绍

Hive中的分区表和分桶表是两种用于优化数据查询和管理的技术。它们可以提高查询性能、减少数据扫描量并提供更精细的数据组织方式。 分区表(Partitioned Table) Hive的分区表将数据按照一个或多个列的值进行逻辑分区。每个分区都是一个独立的子目录,其中包含符合该分区条件…...

CLIP Surgery论文阅读

CLIP Surgery for Better Explainability with Enhancement in Open-Vocabulary Tasks&#xff08;CVPR2023&#xff09; M norm ⁡ ( resize ⁡ ( reshape ⁡ ( F i ˉ ∥ F i ‾ ∥ 2 ⋅ ( F t ∥ F t ‾ ∥ 2 ) ⊤ ) ) ) M\operatorname{norm}\left(\operatorname{resize}\…...

Luancher和unityLibrary都有build.gradle有什么不同

在 Unity 项目中&#xff0c;通常会包含两个主要的 Module&#xff1a; Launcher Module: 这是 Android 项目的主要 Module&#xff0c;包含 UnityPlayerActivity&#xff0c;并负责启动 Unity 游戏。 unityLibrary Module: 这是 Unity 导出的 Android 工程&#xff0c;其中包…...

【Unity】2D角色跳跃控制器

最近加了学校的Nova独游社&#xff0c;本文是社团出的二面题&#xff0c;后续有时间优化下可能会做成一个二维冒险小游戏。本文主要涉及相关代码&#xff0c;参考教程&#xff1a;《勇士传说》横版动作类游戏开发教程 效果演示 【Unity】2D角色跳跃模拟器 主要实现功能&#xf…...

Gradle vs Maven

Gradle是一个基于Apache Ant和Apache Maven概念的项目自动化构建工具。它使用一种基于Groovy的特定领域语言(DSL)来声明项目设置&#xff0c;抛弃了基于XML的各种繁琐配置。面向Java应用为主。当前其支持的语言限于Java、Groovy、Kotlin和Scala&#xff0c;计划未来将支持更多的…...

Linux认证 | RHCA是什么等级的证书?考到工资能有多少?

RHCA就是红帽认证架构师&#xff0c;RHCA是红帽公司在红帽认证工程师&#xff08;RHCE&#xff09;和红帽认证技师&#xff08;RHCT&#xff09;认证推出之后又一个最新的顶级认证&#xff0c;在业界也是最受欢迎的、最成熟的linux认证。 那么RHCA是什么等级的证书&#xff1f…...

SQLite System.Data.SQLite和sqlite-net-pcl之间的区别

System.Data.SQLite System.Data.SQLite是一个.NET数据提供程序&#xff0c;用于操作SQLite数据库。它是在SQLite C语言库之上构建的&#xff0c;提供了以.NET方式访问SQLite数据库的功能。System.Data.SQLite提供了ADO.NET接口&#xff0c;可以与其他关系型数据库一样使用Com…...

【Leetcode】【消失的数字】【C语言】

方法一&#xff1a;按位异或&#xff08;找单身狗&#xff09; 我们知道&#xff1a;按位异或^操作原则&#xff1a;相同为零&#xff0c;相异为一 所以 0^aa a ^a0 a ^bb ^a int missingNumber(int* nums, int numsSize){ int i 0; int tem1 0,tem20; for (i 0;i < nu…...

在Linux中安装宝塔面板

在公网为x.x.x.x的服务器上安装宝塔面板 安装宝塔面板 第一步&#xff0c;下载安装宝塔面板。 命令&#xff1a;cd /usr/local/src wget -O install.sh http://download.bt.cn/install/install_6.0.sh && sh install.sh 注意&#xff1a;需要等几分钟来下载宝塔面…...

数据结构 - 全貌总结

目录 一. 前言 二. 分类 三. 常见的线性和非线性结构 一. 前言 数据结构是计算机存储、组织数据的方式。一种好的数据结构可以带来更高的运行或者存储效率。数据在内存中是呈线性排列的&#xff0c;但是我们可以使用指针等道具&#xff0c;构造出类似“树形”等复杂结构。 数…...

淘宝API商品详情接口丨关键词搜索接口丨用户评论接口丨淘宝销量接口

淘宝API商品详情接口&#xff0c;关键词搜索接口&#xff0c;用户评论接口&#xff0c;淘宝销量接口如下&#xff1a; 淘宝/天猫获得淘宝商品详情 API 返回值说明 item_get-获得淘宝商品详情 1.公共参数 名称类型必须描述keyString是调用key&#xff08;必须以GET方式拼接在…...

Android开机动画启动流程

首语 在Android设备开机启动时&#xff0c;会展示Android开机动画&#xff0c;用于增加用户体验和展示设备品牌等信息。它也是Android系统启动的一部分。开机动画是由bootanimation负责的&#xff0c;因此首先先了解下bootanimation是如何启动的。 bootanimation 启动脚本分析…...