当前位置: 首页 > news >正文

『昆仑天工』4款AI产品开源!提供API对接!

在文章开篇,小圈先介绍下 昆仑万维 公司旗下的AI大模型**『天工』**,它是由昆仑万维自研的双千亿级大语言模型, 也是国内首个对标ChatGPT的双千亿级大语言模型,可满足文案创作、知识问答、代码编程、逻辑推演、数理推算等需求。

早在今年上半年的时候,小圈还申请过天工的 内测试用资格。而当时各种ChatGPT产品层出不穷,功能使用上也都前篇一律,所以也就试用过几次没在关注过了。

而现在天工支持平台也扩展了,支持了:网页端、IOS端、Android端

前不久再次登录官网时发现,官方已经在GitHub上开源了 SkyChat、SkyPaint、SkyText、SkyCode 四款AI功能产品。一查之下,确定它们是基于百亿级大语言模型“天工”Skywork-13B系列,并配套开源了600GB、150B Tokens的超大高质量开源中文数据集。而且这些模型开发者不需要额外的申请,可以直接使用甚至商用。

今天主要分享一下四款开源产品的主要功能和应用场景。

1、SkyChat

SkyChat 是一款基于中文GPT-3 API研发的聊天机器人项目。它可以像ChatGPT一样,实现人机聊天、对话、你问我答,除此之外还能支持中英文互译、对对联、内容续写、写古诗、生成菜谱、第三人称转述、创建采访问题等多种功能。

项目地址:https://github.com/SkyWorkAIGC/SkyChat-Chinese-Chatbot-GPT3

官方也提供了相应的API示例及文档参考,以供开发者调用使用。

比如:生成菜谱API演示

效果展示:

Python版API - Demo(需注册申请APIKey):

2、SkyPaint

SkyPaint 是基于 Stable Diffusion 优化的AI绘画模型。支持输入中英文文本,可生成多种现代艺术风格的高质量图像。

项目地址:https://github.com/SkyWorkAIGC/SkyPaint-AI-Diffusion

机械狗:

宫崎骏动画-城堡-大海:

Python模型调用示例(模型下载在GitHub上):

from diffusers import StableDiffusionPipeline  device = 'cuda'  
pipe = StableDiffusionPipeline.from_pretrained("path_to_our_model").to(device)  prompts = [  '机械狗',  '城堡 大海 夕阳 宫崎骏动画',  '花落知多少',  '鸡你太美',  
]  for prompt in prompts:  prompt = 'sai-v1 art, ' + prompt  image = pipe(prompt).images[0]    image.save("%s.jpg" % prompt)

3、SkyText

SkyText 是由奇点智源(昆仑万维收购的新企AI公司)发布的中文GPT3预训练大模型,可以进行聊天、问答、中英互译等不同的任务。应用这个模型,除了可以实现基本的聊天、对话、你问我答外,还能支持中英文互译、内容续写、对对联、写古诗、生成菜谱、第三人称转述、创建采访问题等多种功能。(跟SkyChat很像)

项目地址:https://github.com/SkyWorkAIGC/SkyText-Chinese-GPT3

模型使用:

# -*- coding: utf-8 -*-  
from transformers import GPT2LMHeadModel  
from transformers import AutoTokenizer  
from transformers import TextGenerationPipeline  # 以 SkyWork/SkyText(13billions) 为例,还有 SkyWork/SkyTextTiny(2.6billions) 可用, 期待使用  model = GPT2LMHeadModel.from_pretrained("SkyWork/SkyText")  
tokenizer = AutoTokenizer.from_pretrained("SkyWork/SkyText", trust_remote_code=True)  
text_generator = TextGenerationPipeline(model, tokenizer, device=0)  
input_str = "今天是个好天气"  
max_new_tokens = 20  
print(text_generator(input_str, max_new_tokens=max_new_tokens, do_sample=True)) 

4、SkyCode

SkyCode 是一个多语言开源编程大模型,采用GPT3模型结构,支持Java, JavaScript, C, C++, Python, Go, shell等多种主流编程语言,并能理解中文注释。模型可以对代码进行补全,拥有强大解题能力。

项目亮点:涵盖多种编程语言、针对中文注释进行优化、极其出色的解题能力

项目地址:https://github.com/SkyWorkAIGC/SkyCode-AI-CodeX-GPT3

体验地址:https://sky-code.singularity-ai.com/

模型能力对比:

modelpass@1pass@10pass@100
GPT-Neo 1.3B4.79%7.47%16.30%
GPT-Neo 2.7B6.41%11.27%21.37%
GPT-J 6B11.62%15.74%27.74%
SKY_code(2.6B)12.84%21.07%35.97%

模型使用:

# -*- coding: utf-8 -*-  
from transformers import GPT2LMHeadModel  
from transformers import AutoTokenizer  
from transformers import TextGenerationPipeline  model = GPT2LMHeadModel.from_pretrained("SkyWork/SkyCode")  
tokenizer = AutoTokenizer.from_pretrained("SkyWork/SkyCode", trust_remote_code=True)  
text_generator = TextGenerationPipeline(model, tokenizer, device=0)  
input_str = "if __name__"  
max_new_tokens = 40  
print(text_generator(input_str, max_new_tokens=max_new_tokens, do_sample=True))

相关文章:

『昆仑天工』4款AI产品开源!提供API对接!

在文章开篇,小圈先介绍下 昆仑万维 公司旗下的AI大模型**『天工』**,它是由昆仑万维自研的双千亿级大语言模型, 也是国内首个对标ChatGPT的双千亿级大语言模型,可满足文案创作、知识问答、代码编程、逻辑推演、数理推算等需求。 …...

C语言--每日五道选择题--Day2

第一题: 1、有如下代码,则 *(p[0]1) 所代表的数组元素是( ) int a[3][2] {1, 2, 3, 4, 5, 6}, *p[3]; p[0] a[1]; A: a[0][1] B: a[1][0] C: a[1][1] D: a[1][2] 答案及解析:C 首先要明确p是一个指针数组 p[0] a[…...

C++——类和对象(初始化列表、匿名对象、static成员、类的隐式类型转换和explicit关键字、内部类)

初始化列表、匿名对象、static成员、类的隐式类型转换和explicit关键字、内部类 本章思维导图: 注:本章思维导图对应的xmind文件和.png文件都已同步导入至资源 文章目录 初始化列表、匿名对象、static成员、类的隐式类型转换和explicit关键字、内部类1.…...

高德地图撒点组件

一、引入amap地图库 - public/index.html <script type"text/javascript">window._AMapSecurityConfig {securityJsCode: 地图密钥 }</script><scripttype"text/javascript"src"https://webapi.amap.com/maps?v1.4.8&key111111…...

TCP/IP协议群

TCP/IP协议群 什么是TCP/IP协议群 从字面意义上讲&#xff0c;有人可能会认为 TCP/IP 是指 TCP 和 IP 两种协议。实际生活当中有时也确实就是指这两种协议。然而在很多情况下&#xff0c;它只是利用 IP 进行通信时所必须用到的协议群的统称。具体来说&#xff0c;IP 或 ICMP、…...

esxi 6.7下安装黑裙

esxi上创建一个黑裙系统的虚拟机&#xff0c;用来存资料 一、工具 硬件&#xff1a; 工控机&#xff1a;装有esxi6.7系统&#xff08;192.168.100.2&#xff09;&#xff0c;配置&#xff1a;3865U&#xff0c;16G内存&#xff0c;120Gmsata120sata硬盘&#xff0c;6个网口 主…...

C++初阶-类和对象(下)

类和对象&#xff08;下&#xff09; 一、再谈构造函数构造函数体赋值初始化列表explicit关键字 二、static成员概念特性 三、友元友元函数友元类 四、内部类五、匿名对象六、拷贝对象时的一些编译器优化七、再次理解类和对象 一、再谈构造函数 构造函数体赋值 在创建对象时&a…...

MD5校验 C语言实现 (附源码)

1.简介 MD5即Message-Digest Algorithm 5&#xff08;信息-摘要算法5&#xff09;&#xff0c;用于确保信息传输完整一致。是计算机广泛使用的杂凑算法之一&#xff08;又译摘要算法、哈希算法&#xff09;&#xff0c;主流编程语言普遍已有MD5实现。 MD5算法具有以下特点&am…...

成功解决/bin/sh: cc: command not found和/bin/sh: g++: command not found

成功解决/bin/sh: cc: command not found和/bin/sh: g: command not found 目录 解决问题 解决思路 解决方法 解决问题 make: cc: Command not found /bin/sh: cc: command not found expr: syntax error expr: syntax error make: cc: Command not found I llama.cpp buil…...

理解ELMo 模型

ELMo是一种用于处理自然语言的技术&#xff0c;它能够帮助计算机更好地理解词语在不同上下文中的含义。比如&#xff0c;在句子"他去银行取钱"&#xff08;"He went to the bank to withdraw money"&#xff09;和"他在河岸边钓鱼"&#xff08;&…...

oracle 基础语法总结

常用简单查询汇总&#xff08;必须掌握&#xff0c;记不住的收藏以备查看&#xff09; 1、查询有奖金的员工: select* from emp where comm is not null; 2、查询没有奖金的员工信息: select * from emp where comm is null; 3、两个条件以上就得用and 如查询工资大于1500和有…...

Visual Studio 2017附加依赖项

在读韩国人尹圣雨的《TCP/IP网络编程》,在书中教我如何在Visual Studio 2008中设置附加依赖项&#xff0c;但是我使用的是Visual Studio 2017&#xff0c;所以我写下这篇文章学习如何在Visual Studio 2017附加依赖项。 在项目这里选择属性。 选择输入这一项&#xff0c;然后点…...

获取狮子座明年恋爱运势预测API接口

获取狮子座明年恋爱运势预测API接口的功能是通过API接口获取狮子座明年恋爱运势的预测结果&#xff0c;为用户提供恋爱运势指导。 首先&#xff0c;使用挖数据平台该API接口需要先申请API密钥。在获取API密钥后&#xff0c;可以使用该接口进行开发。 API接口地址为&#xff1a…...

USB HID在系统下通信的一些总结

前言 这篇文章主要介绍在PC&#xff08;上位机&#xff0c;Host&#xff09;端&#xff0c;通过HID与硬件进行通信的一些总结&#xff0c;像很多同学肯定和我一样压根不想 去了解什么USB相关的资料&#xff0c;毕竟USB太复杂了&#xff0c;只想有个API给我们进行下数据就好了&…...

[java进阶]——方法引用改写Lambda表达式

&#x1f308;键盘敲烂&#xff0c;年薪30万&#x1f308; 目录 &#x1f4d5;概念介绍&#xff1a; ⭐方法引用的前提条件&#xff1a; 1.引用静态方法 2.引用构造方法 ①类的构造&#xff1a; ②数组的构造&#xff1a; 3.引用本类或父类的成员方法 ①本类&#xff1…...

lvs dr+keepalived

基于keepalived(主从双主) LVS(DR模型) DNS实现http高可用集群 keepalived高可用主机IP&#xff1a;172.21.5.22和172.21.5.21 http服务高可用主机IP&#xff1a;172.21.5.16和172.21.5.18 VIP采用172.16.32.5 各虚拟机及主机名和IP对应关系如下所示&#xff1a; 虚拟机主机…...

如何使新手小白编码能力暴涨之Devchat-AI

在这个快速发展的时代&#xff0c;开发者的任务越来越繁重&#xff0c;要求他们快速、高效地完成开发任务。然而&#xff0c;传统的开发方式已经无法满足这个需求。在这种情况下&#xff0c;Devchat的出现给开发者带来了新的帮助。Devchat是一个研发效能分析平台&#xff0c;它…...

SAP ABAP基础语法-TCODE学习(八)

一、 SD-如何在订单中使用客户层次定价的配置和维护步骤 在SD中有时会用到按客户层次进行定价的策略,我这里就将配置和维护的步骤简单写出来,供大家参考. 1)定义层次类型(VOH1) 路径:销售和分销->主数据->业务合作伙伴->客户->客户层次->定义层次类型 (1)伙…...

stm32-arm固件开发

文章目录 前言1. 前言 ARM体系结构与程序设计【全68讲】 1....

LeetCode 面试题 16.17. 连续数列

文章目录 一、题目二、C# 题解 一、题目 给定一个整数数组&#xff0c;找出总和最大的连续数列&#xff0c;并返回总和。 示例&#xff1a; 输入&#xff1a; [-2,1,-3,4,-1,2,1,-5,4] 输出&#xff1a; 6 解释&#xff1a; 连续子数组 [4,-1,2,1] 的和最大&#xff0c;为 6。…...

基于距离变化能量开销动态调整的WSN低功耗拓扑控制开销算法matlab仿真

目录 1.程序功能描述 2.测试软件版本以及运行结果展示 3.核心程序 4.算法仿真参数 5.算法理论概述 6.参考文献 7.完整程序 1.程序功能描述 通过动态调整节点通信的能量开销&#xff0c;平衡网络负载&#xff0c;延长WSN生命周期。具体通过建立基于距离的能量消耗模型&am…...

Admin.Net中的消息通信SignalR解释

定义集线器接口 IOnlineUserHub public interface IOnlineUserHub {/// 在线用户列表Task OnlineUserList(OnlineUserList context);/// 强制下线Task ForceOffline(object context);/// 发布站内消息Task PublicNotice(SysNotice context);/// 接收消息Task ReceiveMessage(…...

基于Uniapp开发HarmonyOS 5.0旅游应用技术实践

一、技术选型背景 1.跨平台优势 Uniapp采用Vue.js框架&#xff0c;支持"一次开发&#xff0c;多端部署"&#xff0c;可同步生成HarmonyOS、iOS、Android等多平台应用。 2.鸿蒙特性融合 HarmonyOS 5.0的分布式能力与原子化服务&#xff0c;为旅游应用带来&#xf…...

高危文件识别的常用算法:原理、应用与企业场景

高危文件识别的常用算法&#xff1a;原理、应用与企业场景 高危文件识别旨在检测可能导致安全威胁的文件&#xff0c;如包含恶意代码、敏感数据或欺诈内容的文档&#xff0c;在企业协同办公环境中&#xff08;如Teams、Google Workspace&#xff09;尤为重要。结合大模型技术&…...

MySQL 8.0 OCP 英文题库解析(十三)

Oracle 为庆祝 MySQL 30 周年&#xff0c;截止到 2025.07.31 之前。所有人均可以免费考取原价245美元的MySQL OCP 认证。 从今天开始&#xff0c;将英文题库免费公布出来&#xff0c;并进行解析&#xff0c;帮助大家在一个月之内轻松通过OCP认证。 本期公布试题111~120 试题1…...

OPenCV CUDA模块图像处理-----对图像执行 均值漂移滤波(Mean Shift Filtering)函数meanShiftFiltering()

操作系统&#xff1a;ubuntu22.04 OpenCV版本&#xff1a;OpenCV4.9 IDE:Visual Studio Code 编程语言&#xff1a;C11 算法描述 在 GPU 上对图像执行 均值漂移滤波&#xff08;Mean Shift Filtering&#xff09;&#xff0c;用于图像分割或平滑处理。 该函数将输入图像中的…...

Hive 存储格式深度解析:从 TextFile 到 ORC,如何选对数据存储方案?

在大数据处理领域&#xff0c;Hive 作为 Hadoop 生态中重要的数据仓库工具&#xff0c;其存储格式的选择直接影响数据存储成本、查询效率和计算资源消耗。面对 TextFile、SequenceFile、Parquet、RCFile、ORC 等多种存储格式&#xff0c;很多开发者常常陷入选择困境。本文将从底…...

论文笔记——相干体技术在裂缝预测中的应用研究

目录 相关地震知识补充地震数据的认识地震几何属性 相干体算法定义基本原理第一代相干体技术&#xff1a;基于互相关的相干体技术&#xff08;Correlation&#xff09;第二代相干体技术&#xff1a;基于相似的相干体技术&#xff08;Semblance&#xff09;基于多道相似的相干体…...

Mysql中select查询语句的执行过程

目录 1、介绍 1.1、组件介绍 1.2、Sql执行顺序 2、执行流程 2.1. 连接与认证 2.2. 查询缓存 2.3. 语法解析&#xff08;Parser&#xff09; 2.4、执行sql 1. 预处理&#xff08;Preprocessor&#xff09; 2. 查询优化器&#xff08;Optimizer&#xff09; 3. 执行器…...

Go 语言并发编程基础:无缓冲与有缓冲通道

在上一章节中&#xff0c;我们了解了 Channel 的基本用法。本章将重点分析 Go 中通道的两种类型 —— 无缓冲通道与有缓冲通道&#xff0c;它们在并发编程中各具特点和应用场景。 一、通道的基本分类 类型定义形式特点无缓冲通道make(chan T)发送和接收都必须准备好&#xff0…...