一文搞懂Python时间序列
Python时间序列
- 1. datetime模块
- 1.1 datetime对象
- 1.2 字符串和datatime的相互转换
- 2. 时间序列基础
- 3. 重采样及频率转换
- 4. 时间序列可视化
- 5. 窗口函数
- 5.1 移动窗口函数
- 5.2 指数加权函数
- 5.3 二元移动窗口函数
时间序列(Time Series)是一种重要的结构化数据形式。时间序列的数据意义取决于具体的应用场景,主要有以下几种:
- 时间戳(timestamp):特定的时刻
- 固定时期(period):2007年1月或2010年全年
- 时间间隔(interval):由起始和结束时间戳表示。时期(period)可以被看作间隔的特例。
1. datetime模块
1.1 datetime对象
datetime.datetime
对象(以下简称datetime对象)以毫秒形式存储日期和时间。datetime.timedelta
表示datetime对象之间的时间差。
import pandas as pd
import numpy as np
from datetime import datetime,timedelta
%matplotlib inline
now = datetime.now() #now为datetime.datetime对象
now
输出:
datetime.datetime(2019, 10, 11, 15, 33, 5, 701305)
now.year,now.month,now.day
输出:
(2019, 10, 11)
delta = datetime.now()-datetime(2019,1,1) #delta为datetime.timedelta对象
datetime.now() + timedelta(12)
输出:
datetime.datetime(2023, 3, 10, 22, 13, 25, 3470)
1.2 字符串和datatime的相互转换
(1) 利用str
或datetime.strftime
方法(传入一个格式化字符串),datetime对象和pandas的Timestamp对象可以被格式化为字符串;datetime.strptime
可以将字符串转换为日期。
stamp = datetime(2011,1,3)
stamp.strftime('%Y-%m-%d') #或str(stamp)
输出:
‘2011-01-03’
datetime.strptime('2019-10-01','%Y-%m-%d')
输出:
datetime.datetime(2019, 10, 1, 0, 0)
(2) 对于一些常见的日期格式,可以使用datautil
中的parser.parse
方法(不支持中文)
from dateutil.parser import parse
parse('2019-10-01') #形成datetime.datetime对象
输出:
datetime.datetime(2019, 10, 1, 0, 0)
(3) pandas的to_datetime
方法可以解析多种不同的日期表示形式
import pandas as pd
datestrs = ['7/6/2019','8/6/2019']
dates = pd.to_datetime(datestrs) #将字符串列表转换为Timestamp对象
type(dates)
输出:
pandas.core.indexes.datetimes.DatetimeIndex
dates[0]
输出:
Timestamp(‘2019-07-06 00:00:00’)
2. 时间序列基础
pandas最基本的时间序列类型就是以时间戳(通常以Python字符串或datetime对象表示)为索引的Series。
时期(period)表示的是时间时区,比如数日、数月、数季、数年等。
from datetime import datetimedates = [datetime(2019,1,1),datetime(2019,1,2),datetime(2019,1,5),datetime(2019,1,10),datetime(2019,2,10),datetime(2019,10,1)]ts = pd.Series(np.random.randn(6),index = dates) #ts就成为一个时间序列,datetime对象实际上是被存放在一个DatetimeIndex中
ts
输出:
2019-01-01 1.175755
2019-01-02 -0.520842
2019-01-05 -0.678080
2019-01-10 0.195213
2019-02-10 2.201572
2019-10-01 0.115911
dtype: float64
dates = pd.DatetimeIndex(['2019/01/01','2019/01/02','2019/01/02','2019/5/01','3/15/2019']) #同一时间点上多个观测数据
dup_ts = pd.Series(np.arange(5),index = dates)
dup_ts
输出:
2019-01-01 0
2019-01-02 1
2019-01-02 2
2019-05-01 3
2019-03-15 4
dtype: int32
dup_ts.groupby(level = 0).count()
输出:
2019-01-01 1
2019-01-02 2
2019-03-15 1
2019-05-01 1
dtype: int64
pd.date_range
可用于生成指定长度的DatetimeIndex
pd.date_range('2019/01/01','2019/2/1') #默认情况下产生按天计算的时间点。
输出:
DatetimeIndex([‘2019-01-01’, ‘2019-01-02’, ‘2019-01-03’, ‘2019-01-04’,
‘2019-01-05’, ‘2019-01-06’, ‘2019-01-07’, ‘2019-01-08’,
‘2019-01-09’, ‘2019-01-10’, ‘2019-01-11’, ‘2019-01-12’,
‘2019-01-13’, ‘2019-01-14’, ‘2019-01-15’, ‘2019-01-16’,
‘2019-01-17’, ‘2019-01-18’, ‘2019-01-19’, ‘2019-01-20’,
‘2019-01-21’, ‘2019-01-22’, ‘2019-01-23’, ‘2019-01-24’,
‘2019-01-25’, ‘2019-01-26’, ‘2019-01-27’, ‘2019-01-28’,
‘2019-01-29’, ‘2019-01-30’, ‘2019-01-31’, ‘2019-02-01’],
dtype=‘datetime64[ns]’, freq=‘D’)
pd.date_range('2010/01/01',periods = 30) # 传入起始或结束日期及一个表示时间段的数字。
输出:
DatetimeIndex([‘2010-01-01’, ‘2010-01-02’, ‘2010-01-03’, ‘2010-01-04’,
‘2010-01-05’, ‘2010-01-06’, ‘2010-01-07’, ‘2010-01-08’,
‘2010-01-09’, ‘2010-01-10’, ‘2010-01-11’, ‘2010-01-12’,
‘2010-01-13’, ‘2010-01-14’, ‘2010-01-15’, ‘2010-01-16’,
‘2010-01-17’, ‘2010-01-18’, ‘2010-01-19’, ‘2010-01-20’,
‘2010-01-21’, ‘2010-01-22’, ‘2010-01-23’, ‘2010-01-24’,
‘2010-01-25’, ‘2010-01-26’, ‘2010-01-27’, ‘2010-01-28’,
‘2010-01-29’, ‘2010-01-30’],
dtype=‘datetime64[ns]’, freq=‘D’)
pd.date_range('2010/01/01','2010/12/1',freq = 'BM') #传入BM(business end of month),生成每个月最后一个工作日组成的日期索引
输出:
DatetimeIndex([‘2010-01-29’, ‘2010-02-26’, ‘2010-03-31’, ‘2010-04-30’,
‘2010-05-31’, ‘2010-06-30’, ‘2010-07-30’, ‘2010-08-31’,
‘2010-09-30’, ‘2010-10-29’, ‘2010-11-30’],
dtype=‘datetime64[ns]’, freq=‘BM’)
pd.Series(np.arange(13),index = pd.date_range('2010/01/01','2010/1/3',freq = '4h'))
输出:
2010-01-01 00:00:00 0
2010-01-01 04:00:00 1
2010-01-01 08:00:00 2
2010-01-01 12:00:00 3
2010-01-01 16:00:00 4
2010-01-01 20:00:00 5
2010-01-02 00:00:00 6
2010-01-02 04:00:00 7
2010-01-02 08:00:00 8
2010-01-02 12:00:00 9
2010-01-02 16:00:00 10
2010-01-02 20:00:00 11
2010-01-03 00:00:00 12
Freq: 4H, dtype: int32
period_range
可用于创建规则的时期范围
pd.Series(np.arange(10),index = pd.period_range('2019/1/1','2019/10/01',freq='M'))
输出:
2019-01 0
2019-02 1
2019-03 2
2019-04 3
2019-05 4
2019-06 5
2019-07 6
2019-08 7
2019-09 8
2019-10 9
Freq: M, dtype: int32
3. 重采样及频率转换
重采样(resampling)指的是将时间序列从一个频率转换到另一个频率的处理过程。
- 降采样(downsampling):将高频率数据聚合到低频率数据
- 升采样(upsampling):将低频率数据转换到高频率
rng = pd.date_range('2019/01/01',periods = 100,freq='D')
ts = pd.Series(np.random.randn(len(rng)),index=rng)
ts.resample('M').mean()
输出:
2019-01-31 0.011565
2019-02-28 -0.185584
2019-03-31 -0.323621
2019-04-30 0.043687
Freq: M, dtype: float64
ts.resample('M',kind='period').mean()
输出:
2019-01 0.011565
2019-02 -0.185584
2019-03 -0.323621
2019-04 0.043687
Freq: M, dtype: float64
rng = pd.date_range('2019/01/01',periods = 12,freq='T')
ts = pd.Series(np.random.randn(len(rng)),index=rng)
ts.resample('5min').sum()
输出:
2019-01-01 00:00:00 1.625143
2019-01-01 00:05:00 2.588045
2019-01-01 00:10:00 2.447725
Freq: 5T, dtype: float64
金融领域中有种时间序列聚合方式,称为OHLC重采样,即计算各面元的四个值:
- Open:开盘
- High:最高值
- Low:最小值
- Close:收盘
输出:
open | high | low | close | |
---|---|---|---|---|
2019-01-01 00:00:00 | -0.345952 | 1.120258 | -0.345952 | 1.120258 |
2019-01-01 00:05:00 | -0.106197 | 2.448439 | -1.014186 | -1.014186 |
2019-01-01 00:10:00 | 1.445036 | 1.445036 | 1.002688 | 1.002688 |
另一种降采样的办法是实用pandas的groupby方法。
rng = pd.date_range('2019/1/1',periods = 100,freq='D')
ts = pd.Series(np.arange(len(rng)), index = rng)
ts.resample('m').mean()
输出:
2019-01-31 15.0
2019-02-28 44.5
2019-03-31 74.0
2019-04-30 94.5
Freq: M, dtype: float64
ts.groupby(lambda x:x.month).mean()
输出:
1 15.0
2 44.5
3 74.0
4 94.5
dtype: float64
4. 时间序列可视化
需要加载stock.csv文件,该文件格式如下:
AA | AAPL | GE | IBM | JNJ | MSFT | PEP | SPX | XOM | |
---|---|---|---|---|---|---|---|---|---|
1990/2/1 0:00 | 4.98 | 7.86 | 2.87 | 16.79 | 4.27 | 0.51 | 6.04 | 328.79 | 6.12 |
1990/2/2 0:00 | 5.04 | 8 | 2.87 | 16.89 | 4.37 | 0.51 | 6.09 | 330.92 | 6.24 |
1990/2/5 0:00 | 5.07 | 8.18 | 2.87 | 17.32 | 4.34 | 0.51 | 6.05 | 331.85 | 6.25 |
1990/2/6 0:00 | 5.01 | 8.12 | 2.88 | 17.56 | 4.32 | 0.51 | 6.15 | 329.66 | 6.23 |
1990/2/7 0:00 | 5.04 | 7.77 | 2.91 | 17.93 | 4.38 | 0.51 | 6.17 | 333.75 | 6.33 |
close_px_all = pd.read_csv('datasets/stock.csv',parse_dates = True, index_col=0)
close_px = close_px_all[['AAPL','MSFT','XOM']]
close_px.plot() #'AAPL','MSFT','XOM'股价变化
close_px.resample('B').ffill().plot() #填充工作日后,股价变化
close_px.AAPL.loc['2011-01':'2011-03'].plot() #苹果公司2011年1月到3月每日股价
close_px.AAPL.loc['2011-01':'2011-03'].plot() #苹果公司2011年1月到3月每日股价
5. 窗口函数
5.1 移动窗口函数
移动窗口函数(moving window function)指在移动窗口(可带指数衰减权数)上计算的各种统计函数,也包括窗口不定长的函数(如指数加权移动平均)。 与其他统计函数一样,移动窗口函数会自动排除缺失值。
close_px.AAPL.plot()
close_px.AAPL.rolling(250).mean().plot() #250日均线
close_px.rolling(250).mean().plot(logy=True) #250日均线 对数坐标
close_px.AAPL.rolling(250,min_periods=10).std().plot() #标准差
5.2 指数加权函数
指数加权函数:定义一个衰减因子(decay factor),以赋予近期的观测值拥有更大的权重。衰减因子常用时间间隔(span),可以使结果兼容于窗口大小等于时间间隔的简单移动窗口(simple moving window)函数。
appl_px = close_px.AAPL['2005':'2009']
ma60 = appl_px.rolling(60,min_periods=50).mean() #60日移动平均
ewma60 = appl_px.ewm(span = 60).mean() #60日指数加权移动平均
appl_px.plot()
ma60.plot(c='g',style='k--')
ewma60.plot(c='r',style='k--') #相对于普通移动平均,能“适应”更快的变化
5.3 二元移动窗口函数
相关系数和协方差等统计运算需要在两个时间序列上执行,如某只股票对某个参考指数(如标普500)的相关系数。
aapl_rets = close_px_all.AAPL['1992':].pct_change()
spx_rets = close_px_all.SPX.pct_change()
corr = aapl_rets.rolling(125,min_periods=100).corr(spx_rets) #APPL6个月回报与标准普尔500指数的相关系数
corr.plot()
all_rets = close_px_all[['AAPL','MSFT','XOM']]['2003':].pct_change()
corr = all_rets.rolling(125,min_periods=100).corr(spx_rets) #3支股票月回报与标准普尔500指数的相关系数
corr.plot()
相关文章:
一文搞懂Python时间序列
Python时间序列1. datetime模块1.1 datetime对象1.2 字符串和datatime的相互转换2. 时间序列基础3. 重采样及频率转换4. 时间序列可视化5. 窗口函数5.1 移动窗口函数5.2 指数加权函数5.3 二元移动窗口函数时间序列(Time Series)是一种重要的结构化数据形…...
GeoServer发布数据进阶
GeoServer发布数据进阶 GeoServer介绍 GeoServer是用于共享地理空间数据的开源服务器。 它专为交互操作性而设计,使用开放标准发布来自任何主要空间数据源的数据。 GeoServer实现了行业标准的 OGC 协议,例如网络要素服务 (WFS)…...
Docker离线部署
Docker离线部署 目录 1、需求说明 2、下载docker安装包 3、上传docker安装包 4、解压docker安装包 5、解压的docker文件夹全部移动至/usr/bin目录 6、将docker注册为系统服务 7、重启生效 8、设置开机自启 9、查看docker版本信息 1、需求说明 大部份公司为了服务安全…...
《数据库系统概论》学习笔记——第七章 数据库设计
教材为数据库系统概论第五版(王珊) 这一章概念比较多。最重点就是7.4节。 7.1 数据库设计概述 数据库设计定义: 数据库设计是指对于一个给定的应用环境,构造(设计)优化的数据库逻辑模式和物理结构&#x…...
【Datawhale图机器学习】半监督节点分类:标签传播和消息传递
半监督节点分类:标签传播和消息传递 半监督节点分类问题的常见解决方法: 特征工程图嵌入表示学习标签传播图神经网络 基于“物以类聚,人以群分”的Homophily假设,讲解了Label Propagation、Relational Classificationÿ…...
【分布式缓存学习篇】Redis数据结构
一、Redis的数据结构 二、String 数据结构 2.1 字符串常用操作 //存入字符串键值对 SET key value //批量存储字符串键值对 MSET key value [key value ...] //存入一个不存在的字符串键值对 SETNX key value //获取一个字符串键值 GET ke…...
【跟着ChatGPT学深度学习】ChatGPT带我入门NLP
❤️觉得内容不错的话,欢迎点赞收藏加关注😊😊😊,后续会继续输入更多优质内容❤️👉有问题欢迎大家加关注私戳或者评论(包括但不限于NLP算法相关,linux学习相关,读研读博…...
RGB888与RGB565颜色
颜色名称RGB888原色RGB565还原色英RGB888[Hex]RGB888_R[Hex]RGB888_G[Hex]RGB888_B[Hex]RGB565[Hex]RGB565_R[Hex]RGB565_G[Hex]RGB565_B[Hex]黑色Black0x0000000000000x0000000昏灰Dimgray0x6969696969690x6B4DD1AD灰色Gray0x8080808080800x8410102010暗灰Dark Gray0xA9A9A9A9…...
常见的域名后缀有哪些?不同域名后缀的含义是什么?
域名发展至今,已演变出各种各样的域名后缀,导致很多网站管理人员在注册域名时不知该如何选择。下面,中科三方针对常见域名后缀种类,以及不同域名后缀的含义做下简单介绍。 什么是域名后缀? 域名是由一串由点分隔开的…...
LevelDB架构介绍以及读、写和压缩流程
LevelDB 基本介绍 是一个key/value存储,key值根据用户指定的comparator排序。 特性 keys 和 values 是任意的字节数组。数据按 key 值排序存储。调用者可以提供一个自定义的比较函数来重写排序顺序。提供基本的 Put(key,value),Get(key),…...
华为OD机试模拟题 用 C++ 实现 - 快递货车(2023.Q1)
最近更新的博客 【华为OD机试模拟题】用 C++ 实现 - 最多获得的短信条数(2023.Q1)) 文章目录 最近更新的博客使用说明快递货车题目输入输出示例一输入输出Code使用说明 参加华为od机试,一定要注意不要完全背诵代码,需要理解之后模仿写出,通过率才会高。 华为 OD 清单…...
伺服三环控制深层原理解析
我们平时使用的工业伺服,通常是成套伺服,即驱动器和电机型号存在配对关系。 但有些时候,我们要用电机定转子和编码器制作非成套电机,这种时候,我们需要对驱动器进行各种设置才能驱动电机。 此篇文章将通过介绍伺服控制的三环控制原理入手来说明我们调试非成套伺服时需要…...
Cornerstone完整的基于 Web 的医学成像平台(一)
1.简介 Cornerstone是一个开源的基于Web的医学成像平台,它提供了一个易于使用的界面,可以用于加载、显示和处理医学图像。Cornerstone可以用于许多医学图像处理应用程序,例如计算机断层扫描(CT)、磁共振成像ÿ…...
老板让我在Linux中使用traceroute排查服务器网络问题,幸好我收藏了这篇文章!
一、前言 作为网络工程师或者运维工程师,traceroute命令不会陌生,它的作用类似于ping命令,用于诊断网络的连通性,不过traceroute命令输出的命令会比ping命令丰富的多,可以跟踪从源系统到目标系统的路径。 很多工程师…...
一文读懂【数据埋点】
数据埋点是数据采集领域(尤其是用户行为数据采集领域)的术语,指的是针对特定用户行为或事件进行捕获、处理和发送的相关技术及其实施过程。比如用户某个icon点击次数、观看某个视频的时长等等。 数据分析是我们获得需求的来源之一,…...
Qt图片定时滚动播放器+透明过渡动画
目录参考结构PicturePlay.promain.cppmyqlabel.h 自定义QLabelmyqlabel.cpp自定义QLabelpictureplay.hpictureplay.cpppictureplay.uistyle.qss效果源码参考 Qt图片浏览器 QT制作一个图片播放器 Qt中自适应的labelpixmap充满窗口后,无法缩小只能放大 Qt的动画类修改…...
手把手带你做一套毕业设计-征程开启
本文是《手把手带你做一套毕业设计》专栏的开篇,文本将会包含我们创作这个专栏的初衷,专栏的主体内容,以及我们专栏的后续规划。关于这套毕业设计的作者呢前端部分由狗哥负责,服务端部分则由天哥操刀。我们力求毕业生或者新手通过…...
万字解析 Linux 中 CPU 利用率是如何算出来的?
在线上服务器观察线上服务运行状态的时候,绝大多数人都是喜欢先用 top 命令看看当前系统的整体 cpu 利用率。例如,随手拿来的一台机器,top 命令显示的利用率信息如下 这个输出结果说简单也简单,说复杂也不是那么容易就能全部搞明白…...
芯驰(E3-gateway)开发板环境搭建
1-Windows下环境配置 可以在Windows上使用命令行或者IAR IDE编译SSDK项目。Windows编译依赖的工具已经包含在 prebuilts/windows 目录中,包括编译器、Python和命令行工具。 1.1.1 CMD SSDK集成 msys 工具,可以在Windows命令行中完成SDK的配置、编译和…...
HiveSql一天一个小技巧:如何巧用分布函数percent_rank()求去掉最大最小值的平均薪水问题
0 问题描述参考链接(3条消息) HiveSql面试题12--如何分析去掉最大最小值的平均薪水(字节跳动)_莫叫石榴姐的博客-CSDN博客文中已经给出了三种解法,这里我们借助于此题,来研究如何用percent_rank()函数求解,简化解题思路…...
【python实现华为OD机试真题】优雅子数组【2023 Q1 | 200分】
题目描述 如果一个数组Q中出现次数最多的元素出现大于等于K次,被称为k-优雅数组,k也可以被称为优雅阈值只。 例如: 数组1,2, 3, 1、2, 3, 1,它是一个3-优雅数组,因为元素1出现次数大于等于3次, 数组[1,2, 3, 1, 2]就不是一一个3-优雅数组,因为其中出现次数最多的元素是1和…...
九种分布式ID解决方案
文章目录背景1、UUID2、数据库自增ID2.1、主键表2.2、ID自增步长设置3、号段模式4、Redis INCR5、雪花算法6、美团(Leaf)7、百度(Uidgenerator)8、滴滴(TinyID)总结比较背景 在复杂的分布式系统中,往往需要对大量的数据进行唯一标识,比如在对一个订单表…...
RocketMQ源码分析
RocketMQ源码深入剖析 1 RocketMQ介绍 RocketMQ 是阿里巴巴集团基于高可用分布式集群技术,自主研发的云正式商用的专业消息中间件,既可为分布式应用系统提供异步解耦和削峰填谷的能力,同时也具备互联网应用所需的海量消息堆积、高吞吐、可靠…...
跟着我从零开始入门FPGA(一周入门系列)第六天
6、有限状态机状态机,只要C代码写过2年的人,估计无人不识君,稍微复杂的逻辑都可以借助状态机来简化问题。为了方便,我们使用前面用过的一个例子,来说明状态机的应用,也就是说我们前面已经有意无意的用过状态…...
2023最新JVM面试题汇总进大厂必备
JVM 面试题汇总 1.什么是 JVM?它有什么作用? 答:JVM 是 Java Virtual Machine(Java 虚拟机)的缩写,顾名思义它是一个虚 拟计算机,也是 Java 程序能够实现跨平台的基础。它的作用是加载 Java 程…...
Cocoa-presentViewController
presentViewController:animator: 将一个viewController以动画方式显示出来 当VCA模态的弹出了VCB,那么VCA就是presenting view controller,VCB就是presented view controller presentViewController 相较于addSubView 直接作为subView就是不会出现一…...
Vue Mixins
Vue Mixins 详解 Vue.js 是一个非常流行的 JavaScript 框架,它提供了一系列的工具来简化 Web 应用程序的开发。其中一个非常有用的工具就是 Mixins。 什么是 Mixins? Mixins 是一种 Vue.js 组件复用的方法,它允许您将一组组件选项合并到一…...
Django-版本信息介绍-版本选择
文章目录1.如何获取Django1.1.选项1:获取最新的正式版本1.2.选项2:获取4.2的beta版1.3.选项3:获取最新的开发版本2.得到之后3.支持版本4.选择版本1.如何获取Django Django在BSD许可下是开源的。我们建议使用最新版本的Python 3。支持Python 2.7的最新版本是Django 1.11 LTS。请…...
写给交互设计新手的信息架构全方位指南
目录什么是信息架构?通用方法日常工作可以关注的大神常用工具相关书籍什么是信息架构?信息架构是一个比众多其他领域更难定义的领域。内容策划由内容策划师来完成,交互设计由设计师来完成,而信息架构的完成与它们不同,…...
15、主从复制,gtid,并行复制,半同步复制,实操案例,常用命令,故障处理
主从复制,gtid,并行复制,半同步复制,实操案例,常用命令,故障处理 1.认识主从复制1.1 主从复制原理深入讲解1.2 主从复制相关参数1.3.主从复制架构部署1.4从库状态详解1.5 .过滤复制2 .gtid复制2.1 什么是GTID?2.2 GTID主从配置2.5 gtid维护2.4 GTID的特点2.3 工作原理2.4 g…...
口碑好的企业网站开发/上线了建站
定义: 记忆一个对象的内部状态,为了允许用户取消不确定或者错误的操作,能够恢复到以前的状态。 优缺点: 优点: 1,提供可恢复机制,能够让用户恢复到历史某个状态。 2,封装细节的操作。…...
新校区建设网站/推广资源seo
干货 编辑:杜伟、蛋酱,来源:机器之心2021 年之后,机器学习将会对哪些领域产生前所未有的影响?在过去的数年,见证了机器学习(ML)和计算机科学领域的许多变化。按照这种长弧形的进步模…...
浅谈政府门户网站建设/上海站优云网络科技有限公司
概述 通过可视化设置好ip地址,子网掩码,网关,dns后,重启电脑或者关机后,网卡的网关会自动消失,自己不见了,导致上不去网。 解决办法 方法一:通过注册表解决 1、开始–运行–输入“…...
手机网站建设比较好的公司/百度指数批量
面试官的问题层出不穷,我们在面试的时候总会被问到一些没接触的东西,所以就需要一个比较全面的面试复习,今天我就分享一个Java全能面试通关手册,希望能在面试方面帮助到大家。 大厂面试题目录阿里一面1.说⼀下ArrayList和LinkedL…...
柬埔寨做博彩网站/seo整站优化系统
本文深入介绍了 asyncio 是如何通过单线程单进程实现并发效果的。以及异步代码是不是能在所有方面都代替同步代码。 一些例子 第一个例子 假设你需要用电饭煲煮饭,用洗衣机洗衣服,给朋友打电话让他过来吃饭。其中,电饭煲需要30分钟才能把饭煮…...
网站建设的简洁性/百度智能建站系统
AngularJS路由报错: Unknown provider: $routeProvider根据先知们的指引,在网上爬贴,有翻到官方的解决文章。原来在AgularJS1.2.0及其之后的版本中,ngRoute已经移动到单独的文件当中,再使用则需要载入angular-route.js这一文件&am…...