当前位置: 首页 > news >正文

matplotlib综合学习

1.arange函数

arange函数需要三个参数,分别为起始点、终止点、采样间隔。采样间隔默认值为1

看例子:

import numpy as np
#import matplotlib.pyplot as plt
x=np.arange(-5,5,1)
print(x)

2.绘制sin(x)曲线

import numpy as np
import matplotlib.pyplot as plt
x=np.arange(-10,10,0.1)
y=np.sin(x)
plt.plot(x,y)
plt.show()
import numpy as np
import matplotlib.pyplot as plt
这部分是导入numpy库,之后起个小名叫np
导入matplotlib.pyplot(一个挺像MATLAB的函数集合),几个小名叫plt.
plt(x,y),咱画平面图也就xy了。
plt.show(),展示图片。
根据正文的第一个标题我们使用arange函数,可以看出(-10,10,0.1)前俩数字是决定横轴的范围,最后一个数字算是精度(这个数越大越糙),下面我看一下精度为一是什么样子的。

可以说是。。。不太美观。

3. 给sin()加标题,控制x,y轴

import numpy as np
import matplotlib.pyplot as plt
x=np.arange(-10,10,0.1)
y=np.sin(x)
plt.xlim(-10,10)
plt.ylim(-3,3)
plt.xlabel("x")
plt.ylabel("y=x^3")
plt.title("$y=x^3$")
plt.plot(x,y)
plt.show()
plt.xlim,这是控制x轴的范围的函数,这是固定的,不可以改,同理,plt.ylim也是。
plt.ylabel,这是给y轴填写标题的函数,同上。
plt.title,填写标题,在最上面,最中间的位置,可以看出这个“$”是不显示的。

4.linspace函数

linspace函数进行采样,linspace函数指定开始值、终值和元素个数来创建一维数组,可以通过endpoint=True关键字指定是否包括终值,缺省设置是包括终值。
看不明白,上例子——>
import numpy as np
#import matplotlib.pyplot as plt
x=np.linspace(0,10,5)
print(x)
y=np.linspace(1,10,10)
print(y)
x中每个数相差2.5;
y中每个数相差1。

5.使用linspace函数画一个sin()

import numpy as np
from pylab import *
x=np.linspace(-6,6,100)
sin1=np.sin(x)
xticks(np.linspace(-5,5,5),('-5','-2.5','0','2.5','5'))
plot(x,sin1,color='blue',linewidth=2.0,linestyle=':')
show()
pylab中包括了很多numpy和pyplot中的常用函数;
xticks(np.linspace(-5,5,5),('-5','-2.5','0','2.5','5')):这个我感觉就是控制x轴的,后面括号的五个数字换啥都行,对应的就是横轴里面的五个坐标(是叫坐标吧),其实没有后面的括号也行,系统还是会匹配这五个数字。
plot(x,sin1,color='blue',linewidth=2.0,linestyle=':'):前两个数就相当于原来的xy,设置蓝色的线,线的宽度是2,线的样式是...的。
(可以选择这些样式:'-', '--', '-.', ':', 'None', ' ', '', 'solid', 'dashed', 'dashdot', 'dotted')。

6.书接上回绘制一条曲线

import numpy as np
from pylab import *
x=np.linspace(-6,6,100)
sin1=np.sin(x)
xticks(np.linspace(-5,5,5),('-5','-2.5','0','2.5','5'))
plot(x,sin1,color='blue',linewidth=2.0,linestyle=':')
show()

7.一张图片上绘制两条曲线

import numpy as np
from pylab import *
x=np.linspace(-6,6,100)
sin1=np.sin(x)
cos1=np.cos(x)
xticks(np.linspace(-5,5,5),('-5','-2.5','0','2.5','5'))
plot(x,sin1,color='blue',linewidth=2.0,linestyle=':')
plot(x,cos1,color='green',linewidth=2.0,linestyle='-')
show()
如上图所示两条曲线就是复制对应曲线的代码,很简单,但是缺点什么,那就是图例,要不然我怎么知道那条曲线是干什么的。

8.图例添加

import numpy as np
from pylab import *
x=np.linspace(-6,6,100)
sin1=np.sin(x)
cos1=np.cos(x)
xticks(np.linspace(-5,5,5),('-5','-2.5','0','2.5','5'))
plot(x,sin1,color='blue',linewidth=2.0,linestyle=':',label='sin(x)')
plot(x,cos1,color='green',linewidth=2.0,linestyle='-',label='cos(x)')
legend(loc='lower left')
show()
唯一和标题2,就多了几个代码:
label='sin(x)'【这句话是给图例加文字用的】
legend(loc='lower left')【这是控制图例位置的】
接下来引入下一个标题:legend函数

9.legend用法

我这里主要是将图例的摆放位置:
best 中文最好的,电脑自己选呗
upper right 右上
upper left 左上
lower left 左下
lower right 右下
right 中间最右
center left 中央偏左
center right 中央偏右
lower center 中央偏下
upper center 中央偏上
center 中央
最好把,是自己上手试一下,这些数据是哪来的呢,我直接写错(͡° ͜ʖ ͡°),程序报错了,电脑直接就告诉我都有啥了(͡° ͜ʖ ͡°)。。

10.画饼图

import numpy as np
import matplotlib.pyplot as plt
data=[1,2,3,4,2]
print(data)
plt.pie(data,explode=[0,0,0,0,0])
plt.show()
data【存放数据,这里放几个数体现在图中就是几个区域】;
那个print没啥用,测试随机数的时候写的,忘删除了;
plt.pie(data,explode=[0,0,0,0,0]),画饼图用的,explode这个参数里面的每个数字不是零之后,都会有一块对应的区域“飞起来”。下面展示一下啊。
import numpy as np
import matplotlib.pyplot as plt
data=[1,2,3,4,2]
print(data)
plt.pie(data,explode=[0,0,0.3,0,0])
plt.show()
那个数字也可以是负数呢,我把第三个数字换成-0.5看看奥。

可以,但是不好。

对了我上头说过随机数,就是把data换成随机生成的列表。
替换的语句是:
data=np.random.randint(1,8,5)
第一个数是随机数的下线(大于等于),第二个数是上限(小于等于),最后一个数是随机出来几个数(五个)。
import numpy as np
import matplotlib.pyplot as plt
data=np.random.randint(1,8,5)
print(data)
plt.pie(data,explode=[0,0,0.5,0,0])
plt.show()

11.散点图

import numpy as np
from pylab import  *
a=np.random.normal(0,10,100)
b=np.random.normal(0,1,100)
scatter(a,b,s=10,c='green')
show()
绘制散点图要注意num(a)=num(b),即a的数量等于b的数量;
scatter(x,y,s=10,c='green'),用来绘制散点图的函数,s代表散点图中(点)圆圈的大小,c代表圆圈的的颜色。
np.random.normal(0,1,100):提供服从正态分布的数据,看下面的例子:
import numpy as np
y=np.random.normal(0,1,100)
print(y)
0:正态分布的均值,0就是y轴的位置。
1:正态分布的标准差,数字越大,正态分布越矮胖;数字越小,正太分布曲线越高瘦。
中间这个数据可以是零,大不了点都集中在中心呗,负数不可以。
100:数据数量,上图中提供100个数据。

12. 柱图

import numpy as np
import  matplotlib.pyplot as plt
plt.figure(figsize=(6,5))
data = np.random.randint(1,8,10)
print(data)
x= np.arange(len(data))
plt.bar(x+1,data,alpha=1,color='green',width=0.2)
plt.show()
加标题等情况使用中文:
import matplotlib as mpl
mpl.rcParams['font.family']='sans-serif'#显示无衬线字体
mpl.rcParams['font.sans-serif']=[u'SimHei']#显示中文
上面的和下面的这几句不用都使用,使用一个就行,要是不行,那就再想想办法吧。
plt.rcParams["font.sans-serif"] = ["SimHei"]# 正确显示中文和负号
plt.rcParams["axes.unicode_minus"] = False
plt.bar (x,data,alpha=1,color='green',width=0.2)
分别是x轴,y轴, 柱形颜色深浅,柱形的颜色,柱形的宽度

x= np.arange(len(data))

13.柱形图加折线

import numpy as np
import  matplotlib.pyplot as plt
plt.figure(figsize=(6,5))
data = np.random.randint(1,8,10)
print(data)
x= np.arange(len(data))
plt.plot(x+1,data,color='r')
plt.bar(x+1,data,alpha=1,color='green',width=0.5)
plt.show()
plt.plot(x+1,data,color='r'),画折线的代码,加上即可。

14.简单三维图

import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
fig = plt.figure()
sd = fig.add_subplot(111, projectinotallow='3d')#111,221,222,223,224
plt.show()
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
fig = plt.figure()
sd = fig.add_subplot(111, projectinotallow='3d')#111,221,222,223,224
X = [0, 1, 2, 1, 2, 4]
Y = [0, 4, 4, 1, 3, 4]
Z = [0, 4, 0, 0, 2, 4]
sd.plot_trisurf(X, Y, Z)
plt.show()
这个3d图可以转动,方便观察;
第四行代码:111,就是全屏或者或是正中间,剩下(221、222、223、224)对应四个角落。
plot_trisurf(z,y,z,...) :画3d曲平面的函数。
x,y,z要竖着看,一列对应的是一个点的坐标。

15.三维曲面标题等设置

import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
plt.rcParams["font.sans-serif"] = ["SimHei"]# 正确显示中文和负号
plt.rcParams["axes.unicode_minus"] = False
fig = plt.figure()
sd = fig.add_subplot(111, projectinotallow='3d')#111,221,222,223,224
X = [0, 1, 2, 1, 2, 4]
Y = [0, 4, 4, 1, 3, 4]
Z = [0, 4, 0, 0, 2, 4]
sd.set_xlabel('x轴')
sd.set_ylabel('y轴')
sd.set_zlabel('z轴')
plt.title('这是标题')
sd.plot_trisurf(X, Y, Z)
plt.show()
我就直接使用标题1里面的代码加工了,
sd.set_xlabel('x轴')#x轴函数
sd.set_ylabel('y轴')#y轴函数
sd.set_zlabel('z轴')#z轴函数
plt.title('这是标题')#添加标题函数
因为我使用了中文,
plt.rcParams["font.sans-serif"] = ["SimHei"]# 正确显示中文和负号
plt.rcParams["axes.unicode_minus"] = False
所以还得用这两行代码,要是仅仅使用英文的话删除即可。

相关文章:

matplotlib综合学习

1.arange函数arange函数需要三个参数,分别为起始点、终止点、采样间隔。采样间隔默认值为1看例子: import numpy as np #import matplotlib.pyplot as plt xnp.arange(-5,5,1) print(x)2.绘制sin(x)曲线import numpy as np import matplotlib.pyplot as …...

IIS .Net Core 413错误和Request body too large解决办法

错误描述图片比较大时&#xff0c;在前端上传就报413错误。根本到不了后端。在网上看到这个文章比较有用。https://blog.csdn.net/wstever/article/details/1288707421、修改网站Web.config配置文件加入下面这段配置<?xmlversion"1.0" encoding"utf-8"…...

Spring Boot数据访问—(springboot 多数据源)—官方原版

Spring Boot 包含许多用于处理数据源的启动器&#xff0c;本文回答与执行此操作相关的问题。一、配置自定义数据源要配置自己的DataSource&#xff0c;请在配置中定义该类型的Bean。Spring Boot在任何需要的地方重用DataSource&#xff0c;包括数据库初始化。如果需要外部化某些…...

高燃!GitHub上标星75k+超牛的Java面试突击版

前言不论是校招还是社招都避免不了各种面试。笔试&#xff0c;如何去准备这些东西就显得格外重要。不论是笔试还是面试都是有章可循的&#xff0c;我这个有章可循‘说的意思只是说应对技术面试是可以提前准备。运筹帷幄之后&#xff0c;决胜千里之外!不打毫无准备的仗,我觉得大…...

grid宫格布局新手快捷上手-f

前言 grid 网上有很多&#xff0c;但都是大而全的&#xff0c;感觉新人上手很吃力&#xff0c;本文仅以最快捷的方式进行介绍&#xff0c;如何使用grid宫格布局 本文是新人上手&#xff0c;若想了解更多grid布局&#xff0c;请阅读其他文章 使用 声明布局 display: grid;声…...

面试必刷101 Java题解 -- part 3

part1 – https://blog.csdn.net/qq_41080854/article/details/129204480 part2 – https://blog.csdn.net/qq_41080854/article/details/129224785 面试必刷101 Java题解 -- part 3动规五部曲71、斐波那契数列72、跳台阶73、最小花费爬楼梯74、最长公共子序列(二)75、最长公共…...

干货满满!MES的简介和运用

导读 谈及MES必须先谈生产&#xff0c;生产体系模型如图所示&#xff0c;涉及人、财、物、信息等资源&#xff0c;产、供、销等环节&#xff0c;以及供应商、客户、合作伙伴等。 其中&#xff0c;生产管理是通过对生产系统的战略计划、组织、指挥、实施、协调、控制等活动&…...

【ElasticSearch系列-01】初识以及安装elasticSearch

elasticSearch入门和安装一&#xff0c;elasticSearch入门1&#xff0c;什么是elasticSearch2&#xff0c;elasticSearch的底层优点2.1&#xff0c;全文检索2.2&#xff0c;倒排索引2.2.1&#xff0c;正排索引2.2.2&#xff0c;倒排索引2.2.3&#xff0c;倒排索引解决的问题2.2…...

【Leedcode】栈和队列必备的面试题(第一期)

栈和队列必备的面试题&#xff08;第一期&#xff09; 文章目录栈和队列必备的面试题&#xff08;第一期&#xff09;一、题目二、思路&#xff08;图解&#xff09;三、存在的问题与隐患&#xff08;报错提示&#xff09;&#xff08;1&#xff09;s中只有右括号&#xff0c;无…...

Unity 渲染流程管线

渲染流程图可以把它理解为一个流程&#xff0c;就是我们告诉GPU一堆数据&#xff0c;最后得出来一副二维图像&#xff0c;而这些数据就包括了”视点、三维物体、光源、照明模型、纹理”等元素。参考如下图(来自视频)CPU应用阶段剔除视锥剔除由Unity依据Camera直接完成&#xff…...

c++之引用

目录 引用的概念 引用做函数参数 引用的本质 常引用 引用的概念 在c中新增加了引用的概念&#xff0c;引用可以看作一个已定义变量的别名。 引用的语法&#xff1a;Type &name var; int main() {int a 10;int &b a;printf("b%d\n", b);printf(&quo…...

Java-扑克牌的创建以及发放

Java-扑克牌的创建以及发放题目&#xff1a;创建一个扑克牌(不需要包含大小王)&#xff0c;分别分发给3个人&#xff0c;一个人发5张牌&#xff0c;输出结果要求包含全套牌(52张牌)&#xff0c;以及3个人各自的牌的花色以及数字。1.扑克牌的源代码2.扑克牌运行结果3.扑克牌代码…...

华为OD机试题,用 Java 解【开放日活动】问题

最近更新的博客 华为OD机试题,用 Java 解【停车场车辆统计】问题华为OD机试题,用 Java 解【字符串变换最小字符串】问题华为OD机试题,用 Java 解【计算最大乘积】问题华为OD机试题,用 Java 解【DNA 序列】问题华为OD机试 - 组成最大数(Java) | 机试题算法思路 【2023】使…...

yarn run serve报错Error: Cannot find module ‘@vue/cli-plugin-babel‘ 的解决办法

问题概述 关于这个问题&#xff0c;是在构建前端工程的时候遇到的&#xff0c;项目构建完成后&#xff0c;“yarn run serve”启动项目时&#xff0c;出现的问题&#xff1a;“ Error: Cannot find module ‘vue/cli-plugin-babel‘ ” 如下图&#xff1a; 具体信息如下&…...

【LeetCode】剑指 Offer(11)

目录 题目&#xff1a;剑指 Offer 29. 顺时针打印矩阵 - 力扣&#xff08;Leetcode&#xff09; 题目的接口&#xff1a; 解题思路&#xff1a; 代码&#xff1a; 过啦&#xff01;&#xff01;&#xff01; 写在最后&#xff1a; 题目&#xff1a;剑指 Offer 29. 顺时针…...

【英语】托福单词 近义/形近 分类汇总(更新中......)

transition 转变 过渡&#xff1b; transmit 传送&#xff08;信息、信号&#xff09; 传播&#xff08;疾病&#xff09; 传达&#xff08;思想&#xff09; transaction 交易 transact 做业务 做交易 translucent 半透明的 transparent 透明的 vague 模糊的 含糊的 笼统的 op…...

面试了一个32岁的程序员,一个细节就看出来是培训班的····

首先&#xff0c;我说一句&#xff1a;培训出来的&#xff0c;优秀学员大有人在&#xff0c;我不希望因为带着培训的标签而无法达到用人单位和候选人的双向匹配&#xff0c;是非常遗憾的事情。 最近&#xff0c;在网上看到这样一个留言&#xff0c;引发了程序员这个圈子不少的…...

Qt软件开发: 编写MQTT客户端连接各大物联网平台(主题订阅、发布)

一、前言 最近几年物联网发展的比较迅速,国内各大厂商都推出物联网服务器,面向设备厂商、个人开发者、提供云端一体的设备智能化服务,利用现成的物联网服务器可以快速实现IoT设备智能化的需求。方便企业、个人接入设备,低成本完成物联网开发。 比如:阿里云、百度云、华为…...

PTA L1-059 敲笨钟(详解)

前言&#xff1a;内容包括&#xff1a;题目&#xff0c;代码实现&#xff0c;大致思路&#xff0c;代码解读 题目&#xff1a; 微博上有个自称“大笨钟V”的家伙&#xff0c;每天敲钟催促码农们爱惜身体早点睡觉。为了增加敲钟的趣味性&#xff0c;还会糟改几句古诗词。其糟改…...

【设计模式】9.桥接模式

概述 现在有一个需求&#xff0c;需要创建不同的图形&#xff0c;并且每个图形都有可能会有不同的颜色。我们可以利用继承的方式来设计类的关系&#xff1a; 我们可以发现有很多的类&#xff0c;假如我们再增加一个形状或再增加一种颜色&#xff0c;就需要创建更多的类。 试…...

DeepSeek 赋能智慧能源:微电网优化调度的智能革新路径

目录 一、智慧能源微电网优化调度概述1.1 智慧能源微电网概念1.2 优化调度的重要性1.3 目前面临的挑战 二、DeepSeek 技术探秘2.1 DeepSeek 技术原理2.2 DeepSeek 独特优势2.3 DeepSeek 在 AI 领域地位 三、DeepSeek 在微电网优化调度中的应用剖析3.1 数据处理与分析3.2 预测与…...

3.3.1_1 检错编码(奇偶校验码)

从这节课开始&#xff0c;我们会探讨数据链路层的差错控制功能&#xff0c;差错控制功能的主要目标是要发现并且解决一个帧内部的位错误&#xff0c;我们需要使用特殊的编码技术去发现帧内部的位错误&#xff0c;当我们发现位错误之后&#xff0c;通常来说有两种解决方案。第一…...

聊聊 Pulsar:Producer 源码解析

一、前言 Apache Pulsar 是一个企业级的开源分布式消息传递平台&#xff0c;以其高性能、可扩展性和存储计算分离架构在消息队列和流处理领域独树一帜。在 Pulsar 的核心架构中&#xff0c;Producer&#xff08;生产者&#xff09; 是连接客户端应用与消息队列的第一步。生产者…...

376. Wiggle Subsequence

376. Wiggle Subsequence 代码 class Solution { public:int wiggleMaxLength(vector<int>& nums) {int n nums.size();int res 1;int prediff 0;int curdiff 0;for(int i 0;i < n-1;i){curdiff nums[i1] - nums[i];if( (prediff > 0 && curdif…...

关于 WASM:1. WASM 基础原理

一、WASM 简介 1.1 WebAssembly 是什么&#xff1f; WebAssembly&#xff08;WASM&#xff09; 是一种能在现代浏览器中高效运行的二进制指令格式&#xff0c;它不是传统的编程语言&#xff0c;而是一种 低级字节码格式&#xff0c;可由高级语言&#xff08;如 C、C、Rust&am…...

Netty从入门到进阶(二)

二、Netty入门 1. 概述 1.1 Netty是什么 Netty is an asynchronous event-driven network application framework for rapid development of maintainable high performance protocol servers & clients. Netty是一个异步的、基于事件驱动的网络应用框架&#xff0c;用于…...

FFmpeg avformat_open_input函数分析

函数内部的总体流程如下&#xff1a; avformat_open_input 精简后的代码如下&#xff1a; int avformat_open_input(AVFormatContext **ps, const char *filename,ff_const59 AVInputFormat *fmt, AVDictionary **options) {AVFormatContext *s *ps;int i, ret 0;AVDictio…...

【实施指南】Android客户端HTTPS双向认证实施指南

&#x1f510; 一、所需准备材料 证书文件&#xff08;6类核心文件&#xff09; 类型 格式 作用 Android端要求 CA根证书 .crt/.pem 验证服务器/客户端证书合法性 需预置到Android信任库 服务器证书 .crt 服务器身份证明 客户端需持有以验证服务器 客户端证书 .crt 客户端身份…...

云原生时代的系统设计:架构转型的战略支点

&#x1f4dd;个人主页&#x1f339;&#xff1a;一ge科研小菜鸡-CSDN博客 &#x1f339;&#x1f339;期待您的关注 &#x1f339;&#x1f339; 一、云原生的崛起&#xff1a;技术趋势与现实需求的交汇 随着企业业务的互联网化、全球化、智能化持续加深&#xff0c;传统的 I…...

Pandas 可视化集成:数据科学家的高效绘图指南

为什么选择 Pandas 进行数据可视化&#xff1f; 在数据科学和分析领域&#xff0c;可视化是理解数据、发现模式和传达见解的关键步骤。Python 生态系统提供了多种可视化工具&#xff0c;如 Matplotlib、Seaborn、Plotly 等&#xff0c;但 Pandas 内置的可视化功能因其与数据结…...