大数据面试题集锦-Hadoop面试题(四)-YARN
你准备好面试了吗?这里有一些面试中可能会问到的问题以及相对应的答案。如果你需要更多的面试经验和面试题,关注一下"张飞的猪大数据分享"吧,公众号会不定时的分享相关的知识和资料。
文章目录
- 1、为什么会产生 yarn,它解决了什么问题,有什么优势?
- 2、简述hadoop1与hadoop2 的架构异同
- 3、Hadoop的调度器总结
- 4、MapReduce 2.0 容错性
- 5、HDFS的数据压缩算法?
- 6、mapreduce推测执行算法及原理
- 7、更多大数据面试集锦
1、为什么会产生 yarn,它解决了什么问题,有什么优势?
1)Yarn最主要的功能就是解决运行的用户程序与yarn框架完全解耦。
2)Yarn上可以运行各种类型的分布式运算程序(mapreduce只是其中的一种),比如mapreduce、storm程序,spark程序……
2、简述hadoop1与hadoop2 的架构异同
1)加入了yarn解决了资源调度的问题。
2)加入了对zookeeper的支持实现比较可靠的高可用。
3、Hadoop的调度器总结
(1)默认的调度器FIFO
Hadoop中默认的调度器,它先按照作业的优先级高低,再按照到达时间的先后选择被执行的作业。
(2)计算能力调度器Capacity Scheduler
支持多个队列,每个队列可配置一定的资源量,每个队列采用FIFO调度策略,为了防止同一个用户的作业独占队列中的资源,该调度器会对同一用户提交的作业所占资源量进行限定。调度时,首先按以下策略选择一个合适队列:计算每个队列中正在运行的任务数与其应该分得的计算资源之间的比值,选择一个该比值最小的队列;然后按以下策略选择该队列中一个作业:按照作业优先级和提交时间顺序选择,同时考虑用户资源量限制和内存限制。
(3)公平调度器Fair Scheduler
同计算能力调度器类似,支持多队列多用户,每个队列中的资源量可以配置,同一队列中的作业公平共享队列中所有资源。实际上,Hadoop的调度器远不止以上三种,最近,出现了很多针对新型应用的Hadoop调度器。
4、MapReduce 2.0 容错性
1)MRAppMaster容错性
一旦运行失败,由YARN的ResourceManager负责重新启动,最多重启次数可由用户设置,默认是2次。一旦超过最高重启次数,则作业运行失败。
2)Map Task/Reduce
Task Task周期性向MRAppMaster汇报心跳;一旦Task挂掉,则MRAppMaster将为之重新申请资源,并运行之。最多重新运行次数可由用户设置,默认4次。
5、HDFS的数据压缩算法?
Hadoop中常用的压缩算法有bzip2、gzip、lzo、snappy,其中lzo、snappy需要操作系统安装native库才可以支持。
数据可以压缩的位置如下所示。
企业开发用的比较多的是snappy。
6、mapreduce推测执行算法及原理
1)作业完成时间取决于最慢的任务完成时间
一个作业由若干个Map 任务和Reduce 任务构成。因硬件老化、软件Bug 等,某些任务可能运行非常慢。
典型案例:系统中有99%的Map任务都完成了,只有少数几个Map老是进度很慢,完不成,怎么办?
2)推测执行机制
发现拖后腿的任务,比如某个任务运行速度远慢于任务平均速度。为拖后腿任务启动一个备份任务,同时运行。谁先运行完,则采用谁的结果。
3)不能启用推测执行机制情况
(1)任务间存在严重的负载倾斜;
(2)特殊任务,比如任务向数据库中写数据。
4)算法原理
假设某一时刻,任务T的执行进度为progress,则可通过一定的算法推测出该任务的最终完成时刻estimateEndTime。另一方面,如果此刻为该任务启动一个备份任务,则可推断出它可能的完成时刻estimateEndTime,于是可得出以下几个公式:
estimateEndTime=estimatedRunTime+taskStartTime
estimatedRunTime=(currentTimestamp-taskStartTime)/progress
estimateEndTime= currentTimestamp+averageRunTime
其中,currentTimestamp为当前时刻;taskStartTime为该任务的启动时刻;averageRunTime为已经成功运行完成的任务的平均运行时间。这样,MRv2总是选择(estimateEndTime- estimateEndTime·)差值最大的任务,并为之启动备份任务。为了防止大量任务同时启动备份任务造成的资源浪费,MRv2为每个作业设置了同时启动的备份任务数目上限。
推测执行机制实际上采用了经典的算法优化方法:以空间换时间,它同时启动多个相同任务处理相同的数据,并让这些任务竞争以缩短数据处理时间。显然,这种方法需要占用更多的计算资源。在集群资源紧缺的情况下,应合理使用该机制,争取在多用少量资源的情况下,减少作业的计算时间。
7、更多大数据面试集锦
- 大数据书籍资料分享
- 大数据面试题集锦
相关文章:

大数据面试题集锦-Hadoop面试题(四)-YARN
你准备好面试了吗?这里有一些面试中可能会问到的问题以及相对应的答案。如果你需要更多的面试经验和面试题,关注一下"张飞的猪大数据分享"吧,公众号会不定时的分享相关的知识和资料。 文章目录1、为什么会产生 yarn,它解决了什么问题…...

Python---time模块
专栏:python 个人主页:HaiFan. 专栏简介:Python在学,希望能够得到各位的支持!!! time模块前言时间戳time.time()将时间戳转换成字符串time.ctime()将时间戳转换为元组time.localtime(时间戳)将元…...

坚鹏:学习贯彻二十大精神 解码共同富裕之道(面向银行)
学习贯彻二十大精神 解码共同富裕之道课程背景: 很多银行从业人员存在以下问题:不知道如何准确解读二十大精神?不清楚共同富裕相关政策要求?不知道如何有效推动共同富裕? 课程特色:有实战案例有…...

python查看程序的cpu和内存资源占用情况
1.获取线程消耗的内存 :线程内存使用的概念没有明确定义。线程共享它们的内存。唯一真正的线程本地内存是它的调用堆栈,除非您认真地递归地做一些事情,否则这不是有趣的部分。 2.获取进程消耗的内存 3.获取程序消耗的内存 mprof run endpoint.py 4.查看…...

番外10:使用ADS对射频功率放大器进行非线性测试2(使用带宽20MHz的64QAM信号进行ACLR、EVM、CCDF测试)
番外10:使用ADS对射频功率放大器进行非线性测试2(使用带宽20MHz的64QAM信号进行ACLR、EVM、CCDF测试) 1、基本理论 功率放大器的非线性性能十分重要,特别是对于当前广泛使用的移动设备。由于其各种复杂的信号调制,功…...

Ubuntu搭建maven私服
1.安装JDK8 已经是JDK8的需要配置环境变量,如果是更高版本的JDK则需要修改nexus配置文件 2.下载nexus安装包 百度网盘下载:链接:https://pan.baidu.com/s/1DfKqql8tZNQXEBxAEH7UyA 提取码:hx4p安装到有磁盘的目录如下所示&…...

【JavaWeb】Servlet基础
文章目录1.Tomcat服务器安装注意事项2.编写WebApp3.BS系统角色和协议4.模拟Servlet4.1模拟sun公司4.2模拟Tomcat服务器4.3模拟WebApp开发者5.开发一个带有Servlet的WebApp5.1创建一个名为crm的项目5.2 在项目中创建一个名为WEB-INF的文件(必须)5.3在WEB-…...

pinia + pinia-plugin-persistedstate + 组合式API 写法,持久化失效问题
持久化失效卡了一天的问题安装使用就不多说了,主要是针对持久化失效的几个问题说明和解决方法首先是组合式写法,配置持久化export const useUserStore defineStore(user, () > {},{persist: true} )defineStore 第三个参数,具体可以看 p…...

ptrace 调式详解
在程序出现bug的时候,最好的解决办法就是通过 GDB 调试程序,然后找到程序出现问题的地方。比如程序出现 段错误(内存地址不合法)时,就可以通过 GDB 找到程序哪里访问了不合法的内存地址而导致的。本文不是介绍GDB不是使…...

【AI绘画】绝美春天插画,人人都是插画师
春天,自然界重新苏醒,生机勃勃,百花争艳,万籁俱寂。一切都被新的生命活力所染上。春风拂面,一股清新的空气流过,仿佛带着一种神秘的力量,让人心旷神怡,心情舒畅、轻松愉悦。 突然&a…...

蓝桥杯入门即劝退(二十四)重复的子字符串(被秒杀)
欢迎关注点赞评论,共同学习,共同进步! ------持续更新蓝桥杯入门系列算法实例-------- 如果你也喜欢Java和算法,欢迎订阅专栏共同学习交流! 你的点赞、关注、评论、是我创作的动力! -------希望我的文章…...

针对序列级和词元级应用微调BERT(需修改)
对于序列级和词元级自然语言处理应用,BERT只需要最小的架构改变(额外的全连接层),如单个文本分类(例如,情感分析和测试语言可接受性)、文本对分类或回归(例如,自然语言推…...

(四十七)大白话表锁和行锁互相之间的关系以及互斥规则是什么呢?
今天我们接着讲,MySQL里是如何加表锁的。这个MySQL的表锁,其实是极为鸡肋的一个东西,几乎一般很少会用到,表锁分为两种,一种就是表锁,一种是表级的意向锁,我们分别来看看。 首先说表锁…...

织梦TXT批量导入TAG标签并自动匹配相关文章插件
织梦TXT批量导入TAG标签并自动匹配相关文章插件是一种非常有用的插件,它可以帮助网站管理员快速地将TAG标签添加到文章中,并自动匹配相关文章。 以下是该织梦TXT批量导入TAG标签插件的几个优点: 1、提高网站的SEO效果:TAG标签是搜…...

Sentinel架构篇 - 10分钟带你看滑动窗口算法的应用
限流算法 以固定时间窗口算法和滑动时间窗口算法为例,展开两种限流算法的分析。 固定时间窗口算法 在固定的时间窗口内,设置允许固定数量的请求进入。如果超过设定的阈值就拒绝请求或者排队。 具体的,按照时间划分为若干个时间窗口&#…...

redis主从复制
<1> redis主从复制介绍: 首先来介绍一下什么是redis主从复制 Redis是一个使用ANSI C编写的开源、支持网络、基于内存、可选持久性的键值对存储数据库。但如果当把数据存储在单个Redis的实例中,当读写体量比较大的时候,服务端就很难承受…...

近期常见组件漏洞更新:
(1)mysql 5.7 在2023年1月17日,发布了到5.7.41版本 mysql 8.0 在2023年1月17日,发布了到8.0.32版本 MySQL :: Download MySQL Community Serverhttps://dev.mysql.com/downloads/mysql/ (2)Tomcat8在202…...

深度学习常用的激活函数总结
各种激活函数总结 目录一、sigmoid二、tanh三、ReLU系列1.原始ReLU2.ReLU改进:Leaky ReLU四、swish五、GeLU一、sigmoid 优点: 1.可以将任意范围的输出映射到 …...

Java编程问题top100---基础语法系列(二)
Java编程问题top100---基础语法系列(二)六、如何测试一个数组是否包含指定的值?简单且优雅的方法:自己动手写逻辑对象数组JDK 8 APIJDK 9 API Set.of()七、重写(Override)equlas和hashCode方法时应考虑的问题理论上讲&…...

网页打印与导出word实现在A4纸上相同效果
在工作中遇到这样一个需求,客户要求: 1、实现在浏览器中打印和导出到word中,要求浏览器打印出来的效果和word中打印的效果基本一致。2、打印的内容要自动分页,第一页的顶部有文件头,最后一页的底部有页尾。 这里记录一…...

备战英语6级——记录复习进度
开始记录—— 学习:如何记录笔记? 1:首先我认为:电脑打字比较适合我! 2:先记笔记,再“填笔记”! 记笔记就是一个框架,记录一个大概的东西。后面需要在笔记中࿰…...

实例10:四足机器人运动学逆解可视化与实践
实例10: 四足机器人运动学逆解单腿可视化 实验目的 了解逆运动学的有无解、有无多解情况。了解运动学逆解的求解。熟悉逆运动学中求解的几何法和代数法。熟悉单腿舵机的简单校准。掌握可视化逆向运动学计算结果的方法。 实验要求 拼装一条mini pupper的腿部。运…...

Elasticsearch7.8.0版本优化——路由选择
目录一、Elasticsearch 如何知道一个文档存放在哪个分片二、不带 routing 查询三、带 routing 查询一、Elasticsearch 如何知道一个文档存放在哪个分片 其实是通过这个公式来计算出来:shard hash(routing) % number_of_primary_shardsrouting 默认值是文档的 id&a…...

Go常量的定义和使用const,const特性“隐式重复前一个表达式”,以及iota枚举常量的使用
Go常量的定义和使用const,以及iota枚举常量的使用Go常量constGo中常量的定义和使用Go特性const,"隐式重复前一个表达式"iota 实现枚举常量Go常量const Go语言中的const整合了C语言中的宏定义常量,const只读变量枚举变量 绝大多数情况下,Go常…...

Git学习(1)pro git阅读
目录 目录: 1. 起步 2. Git 基础 3. Git 分支 4. 服务器上的 Git 5. 分布式 Git 第一章 1.3 Git是什么 1.6运行git前的配置 该开源图书网站 Git - Book (git-scm.com) 目录: 1. 起步 1.1 关于版本控制1.2 Git 简史1.3 Git 是什么?1…...

PHY自协商
1. 自协商定义 自动协商模式是端口根据另一端设备的连接速度和双工模式,自动把它的速度调节到最高的公共水平,即线路两端能具有的最快速度和双工模式。 自协商功能允许一个网络设备能够将自己所支持的工作模式信息传达给网络上的对端,并接受对…...

【大数据离线开发】8.2 Hive的安装和配置
8.3 Hive的安装和配置 安装模式: 嵌入模式 :不需要使用MySQL,需要Hive自带的一个关系型数据库:Derby本地模式、远程模式 ----> 需要MySQL数据库的支持 安装 hive 安装包 1、解压tar -zxvf apache-hive-2.3.0-bin.tar.gz -C…...

Capture Modules:车载网络报文捕获模块
(以下所有图片均来源于Technica官网) Technica Engineering的新一代硬件设备,即Capture Modules,提供了五种变体以涵盖不同带宽的车载以太网(100BASE-T1和1000BASE-T1)以及常见的IVN技术(CAN、C…...

数据结构与算法系列之时间与空间复杂度
这里写目录标题算法的复杂度大O的渐进表示法实例分析空间复杂度每日一题算法的复杂度 衡量一个算法的好坏,一般 是从时间和空间两个维度来衡量的, 即时间复杂度和空间复杂度。 时间复杂度主要衡量一个算法的运行快慢, 空间复杂度主要衡量一个…...

Python代码使用PyQt5制作界面并封装
目录参考链接续:https://blog.csdn.net/yulinxx/article/details/93344163 若要对此程序进行封装,加个界面,然后制作成 EXE, 使用 PyQt5 制作界面,PyInstaller 进行封装成 EXE 可参考: Python制作小软件…...