当前位置: 首页 > news >正文

OSACN-Net:使用深度学习和Gabor心电图信号谱图进行睡眠呼吸暂停分类

在这里插入图片描述
这篇文章在之前读过一次,其主要的思路就是利用Gabor变换,将心电信号转变为光谱图进行识别研究,总体来讲,不同于其他的利用心电信号分类的算法,该论文将心电信号转换为光谱图,在此基础上,分类问题就从信号分类问题变为图像分类(或者检测)的问题。

名词解释:
😃OSA:(Obstructive sleep apnea睡眠呼吸暂停综合征

😃 SGS: (Gabor spectrogram smoothed by a third-order Savitzky–Golay (S-G) filter.) 平滑的Gabor谱图

😃 GS: (Gabor spectrogram) Gabor光谱图

😃 T-F : (time-frequency (T-F) spectral images) 时频图

😃 TFR:the 2-D images of joint T-F representation 2D-时频光谱图

一、主要工作的阐述

作者在论文中阐述了自己所做的主要工作:
1)本文提出了一种集成了SGS和基于深度学习的OSA自动检测方法的新方法。
2)本研究首次采用了S-G滤波器与TFR的融合技术,显著提高了OSA的检测性能。
3)最合适的特征的提取、选择和分类是一项耗时的主观任务。因此,利用T-F光谱图作为输入信号,开发了一个DLM------OSACN-Net。
4)开发的OSACN-Net是不那么复杂的轻量级模型,因为它只包括四个卷积层(CLs)、三个池化层(PLs)和两个完全连接的层(FCLs)。
该算法的流程图大致如下:
1、利用Gabor变换将60s的信号片段由一阶时间序列转变为二维时频光谱图
2、将光谱图使用SG滤波器滤波,得到smoothed Gabor spectrogram (SGS)
images。
3、得到的SGS送入OSA-net当中得到分类。
在这里插入图片描述

二、技术细节

1、数据集处理
论文作者使用的是The Apnea-ECG database数据集,该数据集曾用于心脏病识别挑战赛。其中,将数据集划分为60s的片段,其中每个片段都带有专家标记的是否患有OSA。

2、Gabor Transform
Gabor变换将ECG信号由时间序列转换到频域,这一步还将生成额外的时频图。
3、S-G滤波器
上一步得到的时频图,经过三阶S-G滤波器平滑滤波后,就得到了S-G-S图,由下图所示。
在这里插入图片描述
4、 OSACN-net网络结构
该网络的结构非常简单,如下图所示:
作者前面的主要贡献里也提到了该网络模型的优势在于轻量级和低复杂性,在检测精度上优于Squeezenet和Resnet50
在这里插入图片描述

三、实验结果

在保证输入数据不变的情况下,作者做了以下几组对比实验,并最终论证了OSACN-Net的优势。
在这里插入图片描述

附录

😆 Q1: 如何将一维时间序列转换为二维图像
参考链接:点击链接,一维时间序列处理
😆 Q2:数据集划分的方式
该数据库包含70条心电图记录和整个夜间记录。每条记录时长约为7-10小时,并包括每分钟正常和呼吸暂停的注释。记录根据ApI和呼吸暂停-非呼吸暂停分钟进行划分,每个记录被分割成60秒(6000个样本)片段。分割后共得到11 620个片段。每个片段都被标记为正常或呼吸暂停。因为它比较了不同的周期长度,受试者Id分别为x27m和c01m。
在数据计划分上,80%的数据集用作训练集,10%数据集用作验证集,10%数据集用作测试集。
在这里插入图片描述
😆 Q3:训练以及实验的部分细节
本研究的重点是利用心电信号对正常和呼吸暂停发作进行准确的分类,以获得一个可靠和稳健的OSA检测系统。使用呼吸暂停心电图数据库。这项研究包括三个步骤。首先,心电图记录被分割成60秒的片段。其次,利用GT获得了60秒分段心电信号的频谱图。第三,利用3阶S-G滤波器对获得的光谱图图像进行平滑处理,并馈入DLM。为了选择性能最好的TFR和DLM,将GS和SGS图像作为输入输入预先训练的net50,并开发OSACN-Net对OSA和正常类别进行分类。
📌Gabor变换使用Guassian窗口函数,窗口长度为251
📌使用三阶、窗口长度为5的S-G滤波器提供了更高的信噪比(SNR)和结构相似度指数(SSI)
至此,使用长度为251的高斯窗口将一维信号转换为二维光谱图,并使用窗口长度为5的三阶S-G滤波器得到SGS。
📌为了匹配输入图像的大小,所有图像的大小都被调整压缩, Squeeze-Net、OSACN-Net为227×227,Res-Net50为224×224。
📌优化器使用Adam,训练策略采用十折交叉验证方法;训练了25个epochs,batch_size大小为128.
📌Squeeze-Net and Res-Net50 provide the STD of 0.71 and 0.65 and the CI of 90.34 ±0.44 and 94.51 ± 0.40. The developed OSACN-Net marks as the STD of 0.49 and CI of 94.81 ± 0.30 with SGS images.

相关文章:

OSACN-Net:使用深度学习和Gabor心电图信号谱图进行睡眠呼吸暂停分类

这篇文章在之前读过一次,其主要的思路就是利用Gabor变换,将心电信号转变为光谱图进行识别研究,总体来讲,不同于其他的利用心电信号分类的算法,该论文将心电信号转换为光谱图,在此基础上,分类问题…...

使用开源实时监控系统 HertzBeat 5分钟搞定 Mysql 数据库监控告警

使用开源实时监控系统 HertzBeat 对 Mysql 数据库监控告警实践,5分钟搞定! Mysql 数据库介绍 MySQL是一个开源关系型数据库管理系统,由瑞典MySQL AB 公司开发,属于 Oracle 旗下产品。MySQL 是最流行的开源关系型数据库管理系统之…...

插件 sortablejs:HTML元素可拖动排序

插件 sortablejs 用于可重新排序拖放列表的JavaScript库&#xff1b;关键链接&#xff1a;npm 地址 Github 地址 安装 npm i sortablejs引入 import Sortable from "sortablejs"HTML <ul id"items"><li>item 1</li><li>item …...

libVLC 视频裁剪

作者: 一去、二三里 个人微信号: iwaleon 微信公众号: 高效程序员 裁剪是指去除图像的外部部分,也就是从图像的左,右,顶部和/或底部移除一些东西。通常在视频中,裁剪是一种通过剪切不需要的部分来改变宽高比的特殊方式。 尤其是在做视频墙时,往往需要处理多个 vlc 实例…...

LAMP架构介绍及配置

LAMP架构介绍及配置一、LAMP简介与概述1、LAMP平台概述2、LAMP各组件主要作用3、构建LAMP平台二、编译安装Apache htpd服务1、将所需软件包上传到/opt目录下2、解压以下文件3、移动两个文件并改名4、安装所需工具5、编译安装6、做软连接&#xff0c;使文件可执行7、优化配置文件…...

Android图形显示流程简介

注&#xff1a;本文缩写说明本文代码都是基于Android S一、概述本文将对从App画出一帧画面到这帧画面是如何到达屏幕并最终被人眼看到的这一过程进行简要分析&#xff0c;并将这其中涉及到的各个流程与其在systrace上的体现对应起来&#xff0c;期望最终能够让读者对Android系统…...

4.5.3 ArrayList

文章目录1.特点2. 练习:ArrayList测试3.ArrayList扩容1.特点 存在java.util包中内部是用数组结构存放数据,封装数组的操作,每个对象都有下标内部数组默认的初始容量是10,如果不够会以1.5倍的容量增长查询快,增删数据效率会低 2. 练习:ArrayList测试 package partThree;import…...

十二、Linux文件 - fseek函数讲解

目录 一、fseek函数讲解 二、fseek函数实战 一、fseek函数讲解 重定向文件内部的指针 注&#xff1a;光标 ---- 文件内部的指针 函数原型&#xff1a; int fseek(FILE *stream,long offset,int framewhere) 参数&#xff1a; stream&#xff1a;文件指针offset&#xff1a;…...

Python3.10新特性之match语句示例详解

这篇文章主要为大家介绍了Python3.10新特性之match语句示例详解&#xff0c;有需要的朋友可以借鉴参考下&#xff0c;希望能够有所帮助&#xff0c;祝大家多多进步&#xff0c;早日升职加薪正文在Python 3.10发布之前&#xff0c;Python是没有类似于其他语言中switch语句的&…...

虎牙盈利能力得到改善,但监管风险对其收入产生负面影响

来源&#xff1a;猛兽财经 作者&#xff1a;猛兽财经 监管风险再次成为焦点 过去一段时间&#xff0c;与中概股相关的监管风险再次引起了投资者的注意&#xff0c;这也是正在考虑投资虎牙&#xff08;HUYA&#xff09;的投资者需要注意的问题。 例如&#xff0c;监管机构在2022…...

HBase 分布式搭建

前言: 请先确保 Hadoop 集群搭建完成。 Hadoop 完全分布式搭建(超详细)搭建环境介绍: 三台主机,一主两从,系统为 Centos 7.5。 相关组件版本信息如下: jdk1.8hadoop-3.1.3zookeeper-3.5.7hbase-2.2.3注意,以下安装教程中涉及到的路径请替换成自己的! ZooKeeper 安…...

【Python】修改枚举的取值及链式调用

author: jwensh date: 2023.02.11 文章目录枚举的取值及链式调用需求背景1. enum.key 即获取值&#xff08;而不是 enum.key.value&#xff09;2. 多级链式调用枚举的取值及链式调用 需求背景 测试过程中需要很多参数化的设置及编程规范要求&#xff0c;希望修改数据不修改代…...

复现篇--zi2zi

intro: 用GAN学习东亚语言字体。zi2zi(意思是从字符到字符)是最近流行的pix2pix模型在汉字上的应用和扩展。 article:https://kaonashi-tyc.github.io/2017/04/06/zi2zi.html code:https://github.com/kaonashi-tyc/zi2zi pytorch版本:https://github.com/EuphoriaYan/zi2…...

153、【动态规划】leetcode ——416. 分割等和子集:滚动数组(C++版本)

题目描述 原题链接&#xff1a;1049. 最后一块石头的重量 II 解题思路 本题要找的是最小重量&#xff0c;我们可以将石头划分成两个集合&#xff0c;当两个集合的重量越接近时&#xff0c;相减后&#xff0c;可达到的装量就会是最小&#xff0c;此时本题的思路其实就类似于 4…...

linux head命令(head指令)(获取文件或管道输出结果前n行,默认前10行)与sed命令区别

head命令是一个在Linux系统中常用的命令&#xff0c;用于读取文件的前几行&#xff08;默认读取前10行&#xff09; 文章目录使用方法读取文件的前10行&#xff1a;head filename读取文件的前n行&#xff1a;head -n行数 filename读取多个文件的前几行&#xff1a;head -n 行数…...

Mysql数据库09——分组聚合函数

类似pandas里面的groupby函数&#xff0c;SQL里面的GROUP BY子句也是可以达到分组聚合的效果。 常用的聚合函数有COUNT(),SUM(),AVG(),MAX(),MIN()&#xff0c;其用法看名字都看的出来&#xff0c;下面一一介绍 聚合函数 COUNT()计数 统计student表中计科系学生的人数。 SE…...

第43章 菜单实体及其约束规则的定义实现

1 Core.Domain.Security.Menu namespace Core.Domain.Security { /// <summary> /// 【菜单--类】 /// <remarks> /// 摘要&#xff1a; /// 通过该实体类及其属性成员&#xff0c;用于实现当前程序【Core】.【领域】.【安全】.【菜单】实体与“[ShopDemo].[…...

OpenAI最重要的模型【CLIP】

最近的 AI 突破 DALLE和 Stable Diffusion有什么共同点&#xff1f; 它们都使用 CLIP 架构的组件。 因此&#xff0c;如果你想掌握这些模型是如何工作的&#xff0c;了解 CLIP 是先决条件。 此外&#xff0c;CLIP 已被用于在 Unsplash 上索引照片。 但是 CLIP 做了什么&…...

分享112个JS菜单导航,总有一款适合您

分享112个JS菜单导航&#xff0c;总有一款适合您 112个JS菜单导航下载链接&#xff1a;https://pan.baidu.com/s/1Dm73d2snbu15hZErJjTXxg?pwdfz1c 提取码&#xff1a;fz1c Python采集代码下载链接&#xff1a;https://wwgn.lanzoul.com/iKGwb0kye3wj base_url "h…...

MySQL 3:MySQL数据库基本操作 DQL

数据库管理系统的一个重要功能是数据查询。数据查询不应简单地返回数据库中存储的数据&#xff0c;还应根据需要对数据进行过滤&#xff0c;确定数据的显示格式。MySQL 提供了强大而灵活的语句来实现这些操作。MySQL数据库使用select语句查询数据。 select [all|distinct]<…...

铭豹扩展坞 USB转网口 突然无法识别解决方法

当 USB 转网口扩展坞在一台笔记本上无法识别,但在其他电脑上正常工作时,问题通常出在笔记本自身或其与扩展坞的兼容性上。以下是系统化的定位思路和排查步骤,帮助你快速找到故障原因: 背景: 一个M-pard(铭豹)扩展坞的网卡突然无法识别了,扩展出来的三个USB接口正常。…...

生成xcframework

打包 XCFramework 的方法 XCFramework 是苹果推出的一种多平台二进制分发格式&#xff0c;可以包含多个架构和平台的代码。打包 XCFramework 通常用于分发库或框架。 使用 Xcode 命令行工具打包 通过 xcodebuild 命令可以打包 XCFramework。确保项目已经配置好需要支持的平台…...

ESP32读取DHT11温湿度数据

芯片&#xff1a;ESP32 环境&#xff1a;Arduino 一、安装DHT11传感器库 红框的库&#xff0c;别安装错了 二、代码 注意&#xff0c;DATA口要连接在D15上 #include "DHT.h" // 包含DHT库#define DHTPIN 15 // 定义DHT11数据引脚连接到ESP32的GPIO15 #define D…...

智能在线客服平台:数字化时代企业连接用户的 AI 中枢

随着互联网技术的飞速发展&#xff0c;消费者期望能够随时随地与企业进行交流。在线客服平台作为连接企业与客户的重要桥梁&#xff0c;不仅优化了客户体验&#xff0c;还提升了企业的服务效率和市场竞争力。本文将探讨在线客服平台的重要性、技术进展、实际应用&#xff0c;并…...

Matlab | matlab常用命令总结

常用命令 一、 基础操作与环境二、 矩阵与数组操作(核心)三、 绘图与可视化四、 编程与控制流五、 符号计算 (Symbolic Math Toolbox)六、 文件与数据 I/O七、 常用函数类别重要提示这是一份 MATLAB 常用命令和功能的总结,涵盖了基础操作、矩阵运算、绘图、编程和文件处理等…...

【学习笔记】深入理解Java虚拟机学习笔记——第4章 虚拟机性能监控,故障处理工具

第2章 虚拟机性能监控&#xff0c;故障处理工具 4.1 概述 略 4.2 基础故障处理工具 4.2.1 jps:虚拟机进程状况工具 命令&#xff1a;jps [options] [hostid] 功能&#xff1a;本地虚拟机进程显示进程ID&#xff08;与ps相同&#xff09;&#xff0c;可同时显示主类&#x…...

代码随想录刷题day30

1、零钱兑换II 给你一个整数数组 coins 表示不同面额的硬币&#xff0c;另给一个整数 amount 表示总金额。 请你计算并返回可以凑成总金额的硬币组合数。如果任何硬币组合都无法凑出总金额&#xff0c;返回 0 。 假设每一种面额的硬币有无限个。 题目数据保证结果符合 32 位带…...

【p2p、分布式,区块链笔记 MESH】Bluetooth蓝牙通信 BLE Mesh协议的拓扑结构 定向转发机制

目录 节点的功能承载层&#xff08;GATT/Adv&#xff09;局限性&#xff1a; 拓扑关系定向转发机制定向转发意义 CG 节点的功能 节点的功能由节点支持的特性和功能决定。所有节点都能够发送和接收网格消息。节点还可以选择支持一个或多个附加功能&#xff0c;如 Configuration …...

深入浅出Diffusion模型:从原理到实践的全方位教程

I. 引言&#xff1a;生成式AI的黎明 – Diffusion模型是什么&#xff1f; 近年来&#xff0c;生成式人工智能&#xff08;Generative AI&#xff09;领域取得了爆炸性的进展&#xff0c;模型能够根据简单的文本提示创作出逼真的图像、连贯的文本&#xff0c;乃至更多令人惊叹的…...

macOS 终端智能代理检测

&#x1f9e0; 终端智能代理检测&#xff1a;自动判断是否需要设置代理访问 GitHub 在开发中&#xff0c;使用 GitHub 是非常常见的需求。但有时候我们会发现某些命令失败、插件无法更新&#xff0c;例如&#xff1a; fatal: unable to access https://github.com/ohmyzsh/oh…...