21- 神经网络模型_超参数搜索 (TensorFlow系列) (深度学习)
知识要点
-
fetch_california_housing:加利福尼亚的房价数据,总计20640个样本,每个样本8个属性表示,以及房价作为target
-
超参数搜索的方式: 网格搜索, 随机搜索, 遗传算法搜索, 启发式搜索
-
超参数训练后用: gv.estimator调取最佳模型
-
函数式添加神经网络:
-
model.add(keras.layers.Dense(layer_size, activation = 'relu'))
-
model.compile(loss = 'mse', optimizer = optimizer) # optimizer = keras.optimizers.SGD (learning_rate)
-
sklearn_model = KerasRegressor(build_fn = build_model)
-
from tensorflow.keras.wrappers.scikit_learn import KerasRegressor # 回归神经网络
# 搜索最佳学习率
def build_model(hidden_layers = 1, layer_size = 30, learning_rate = 3e-3):model = keras.models.Sequential()model.add(keras.layers.Dense(layer_size, activation = 'relu', input_shape = x_train.shape[1:]))for _ in range(hidden_layers - 1):model.add(keras.layers.Dense(layer_size, activation = 'relu'))model.add(keras.layers.Dense(1))optimizer = keras.optimizers.SGD(learning_rate)model.compile(loss = 'mse', optimizer = optimizer)# model.summary()return model
sklearn_model = KerasRegressor(build_fn = build_model)
-
callbacks = [keras.callbacks.EarlyStopping(patience = 5, min_delta = 1e-3)] # 回调函数设置
-
gv = GridSearchCV(sklearn_model, param_grid = params, n_jobs = 1, cv= 5,verbose = 1) # 找最佳参数
-
gv.fit(x_train_scaled, y_train)
1 导包
from tensorflow import keras
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import tensorflow as tf
cpu=tf.config.list_physical_devices("CPU")
tf.config.set_visible_devices(cpu)
print(tf.config.list_logical_devices())
2 导入数据
from sklearn.model_selection import train_test_split
from sklearn.datasets import fetch_california_housinghousing = fetch_california_housing()
x_train_all, x_test, y_train_all, y_test = train_test_split(housing.data,housing.target,random_state= 7)
x_train, x_valid, y_train, y_valid = train_test_split(x_train_all, y_train_all,random_state = 11)
3 标准化处理数据
from sklearn.preprocessing import StandardScaler, MinMaxScalerscaler =StandardScaler()
x_train_scaled = scaler.fit_transform(x_train)
x_valid_scaled = scaler.transform(x_valid)
x_test_scaled = scaler.transform(x_test)
4 函数式定义模型
from tensorflow.keras.wrappers.scikit_learn import KerasRegressor # 回归神经网络
# 搜索最佳学习率
def build_model(hidden_layers = 1, layer_size = 30, learning_rate = 3e-3):model = keras.models.Sequential()model.add(keras.layers.Dense(layer_size, activation = 'relu', input_shape = x_train.shape[1:]))for _ in range(hidden_layers - 1):model.add(keras.layers.Dense(layer_size, activation = 'relu'))model.add(keras.layers.Dense(1))optimizer = keras.optimizers.SGD(learning_rate)model.compile(loss = 'mse', optimizer = optimizer)# model.summary()return model
sklearn_model = KerasRegressor(build_fn = build_model)

5 模型训练
callbacks = [keras.callbacks.EarlyStopping(patience = 5, min_delta = 1e-3)]
history = sklearn_model.fit(x_train_scaled, y_train, epochs = 10,validation_data = (x_valid_scaled, y_valid), callbacks = callbacks)

6 超参数搜索
超参数搜索的方式:
-
网格搜索
-
定义n维方格
-
每个方格对应一组超参数
-
一组一组参数尝试
-
-
随机搜索
-
遗传算法搜索
-
对自然界的模拟
-
A: 初始化候选参数集合 --> 训练---> 得到模型指标作为生存概率
-
B: 选择 --> 交叉--> 变异 --> 产生下一代集合
-
C: 重新到A, 循环.
-
-
启发式搜索
-
研究热点-- AutoML的一部分
-
使用循环神经网络来生成参数
-
使用强化学习来进行反馈, 使用模型来训练生成参数.
-
# 使用sklearn 的网格搜索, 或者随机搜索
from sklearn.model_selection import GridSearchCV, RandomizedSearchCVparams = {'learning_rate' : [1e-4, 3e-4, 1e-3, 3e-3, 1e-2, 3e-2],'hidden_layers': [2, 3, 4, 5], 'layer_size': [20, 60, 100]}gv = GridSearchCV(sklearn_model, param_grid = params, n_jobs = 1, cv= 5,verbose = 1)
gv.fit(x_train_scaled, y_train)
- 输出最佳参数
# 最佳得分
print(gv.best_score_) # -0.47164334654808043
# 最佳参数
print(gv.best_params_) # {'hidden_layers': 5,'layer_size': 100,'learning_rate':0.01}
# 最佳模型
print(gv.estimator)
'''<keras.wrappers.scikit_learn.KerasRegressor object at 0x0000025F5BB12220>'''
gv.score

7 最佳参数建模
model = keras.models.Sequential()
model.add(keras.layers.Dense(100, activation = 'relu', input_shape = x_train.shape[1:]))
for _ in range(4):model.add(keras.layers.Dense(100, activation = 'relu'))
model.add(keras.layers.Dense(1))
optimizer = keras.optimizers.SGD(0.01)
model.compile(loss = 'mse', optimizer = optimizer)
model.summary()

callbacks = [keras.callbacks.EarlyStopping(patience = 5, min_delta = 1e-3)]
history = model.fit(x_train_scaled, y_train, epochs = 10,validation_data = (x_valid_scaled, y_valid), callbacks = callbacks)

8 手动实现超参数搜索
- 根据参数进行多次模型的训练, 然后记录 loss
# 搜索最佳学习率
learning_rates = [1e-4, 3e-4, 1e-3, 3e-3, 1e-2, 3e-2]
histories = []
for lr in learning_rates:model = keras.models.Sequential([keras.layers.Dense(30, activation = 'relu', input_shape = x_train.shape[1:]),keras.layers.Dense(1)])optimizer = keras.optimizers.SGD(lr)model.compile(loss = 'mse', optimizer = optimizer, metrics = ['mse'])callbacks = [keras.callbacks.EarlyStopping(patience = 5, min_delta = 1e-2)]history = model.fit(x_train_scaled, y_train, validation_data = (x_valid_scaled, y_valid), epochs = 100, callbacks = callbacks)histories.append(history)

# 画图
import pandas as pd
def plot_learning_curves(history):pd.DataFrame(history.history).plot(figsize = (8, 5))plt.grid(True)plt.gca().set_ylim(0, 1)plt.show()for lr, history in zip(learning_rates, histories): print(lr)plot_learning_curves(history)

相关文章:
21- 神经网络模型_超参数搜索 (TensorFlow系列) (深度学习)
知识要点 fetch_california_housing:加利福尼亚的房价数据,总计20640个样本,每个样本8个属性表示,以及房价作为target 超参数搜索的方式: 网格搜索, 随机搜索, 遗传算法搜索, 启发式搜索 超参数训练后用: gv.estimat…...
《NFL橄榄球》:芝加哥熊·橄榄1号位
芝加哥熊(英语:Chicago Bears)是一支职业美式橄榄球球队。位于伊利诺伊州的芝加哥。现时为全国橄榄球联盟的国家联盟北区的球队。他们曾经赢出九次美式橄榄球比赛的冠军,分别为八次旧制全国橄榄球联盟和一次超级碗冠军(…...
【ES】Elasticsearch核心基础概念:文档与索引
es的核心概念主要是:index(索引)、Document(文档)、Clusters(集群)、Node(节点)与实例,下面我们先来了解一下Document与Index。 RESTful APIs 在讲解Document与Index概念之前,我们先来了解一下RESTful APIs,因为下面讲解Documen…...
实时手势识别(C++与python都可实现)
一、前提配置: Windows,visual studio 2019,opencv,python10,opencv-python,numpy,tensorflow,mediapipe,math 1.安装python环境 这里我个人使用的安装python10&#…...
15个Spring扩展点,一般人知道的不超过5个!
Spring的核心思想就是容器,当容器refresh的时候,外部看上去风平浪静,其实内部则是一片惊涛骇浪,汪洋一片。Spring Boot更是封装了Spring,遵循约定大于配置,加上自动装配的机制。很多时候我们只要引用了一个…...
Elasticsearch:以 “Painless” 方式保护你的映射
Elasticsearch 是一个很棒的工具,可以从各种来源收集日志和指标。 它为我们提供了许多默认处理,以便提供最佳用户体验。 但是,在某些情况下,默认处理可能不是最佳的(尤其是在生产环境中); 因此&…...
js几种对象创建方式
适用于不确定对象内部数据方式一:var p new Object(); p.name TOM; p.age 12 p.setName function(name) {this.name name; }// 测试 p.setName(jack) console.log(p.name,p.age)方式二: 对象字面量模式套路:使用{}创建对象,同…...
阿里云服务器ECS适用于哪些应用场景?
云服务器ECS具有广泛的应用场景,既可以作为Web服务器或者应用服务器单独使用,又可以与其他阿里云服务集成提供丰富的解决方案。 云服务器ECS的典型应用场景包括但不限于本文描述,您可以在使用云服务器ECS的同时发现云计算带来的技术红利。 阿…...
Ajax学习笔记01
引入 翻译成中文就是“异步的Javascript和XML”。即使用Javascript语言与服务器进行异步交互,传输的数据为XML(当然,传输的数据不只是XML)。 AJAX 不是新的编程语言,而是一种使用现有标准的新方法。 AJAX 最大的优点…...
Jinja2----------过滤器的使用、控制语句
目录 1.过滤器的使用 1.过滤器和测试器 2.过滤器 templates/filter.html app.py 效果 3.自定义过滤器 app.py templates/filter.html 效果 2.控制语句 1.if app.py templates/control.html 2.for app.py templates/control.htm 1.过滤器的使用 1.过滤器和测…...
面试了1个自动化测试,开口40W年薪,只能说痴人做梦...
公司前段缺人,也面了不少测试,结果竟然没有一个合适的。一开始瞄准的就是中级的水准,也没指望来大牛,提供的薪资在10-20k,面试的人很多,但平均水平很让人失望。看简历很多都是3年工作经验,但面试…...
冲鸭!33% 程序员月薪达到 5 万元以上~
2023年,随着互联网产业的蓬勃发展,程序员作为一个自带“高薪多金”标签的热门群体,被越来越多的人所关注。在过去充满未知的一年中,他们的职场现状发生了一定的改变。那么,程序员岗位的整体薪资水平、婚恋现状、职业方…...
【RSA】HTTPS中SSL/TLS握手时RSA前后端加密流程
SSL/TLS层的位置 SSL/TLS层在网络模型的位置,它属于应用层协议。接管应用层的数据加解密,并通过网络层发送给对方。 SSL/TLS协议分握手协议和记录协议,握手协议用来协商会话参数(比如会话密钥、应用层协议等等)&…...
clion在linux设置桌面启动图标(jetbrains全家桶均适用)
clion在linux设置桌面启动图标(jetbrains全家桶均适用) 网上大部分步骤都只是pycharm的教程,其实对于jetbrains全家桶都适合,vs code编辑器也可以这样。 刚开始是使用pycharm在linux设置的教程,参照:http…...
Java数据结构LinkedList单链表和双链表模拟实现及相关OJ题秒AC总结知识点
本篇文章主要讲述LinkedList链表中从初识到深入相关总结,常见OJ题秒AC,望各位大佬喜欢 一、单链表 1.1链表的概念及结构 1.2无头单向非循环链表模拟实现 1.3测试模拟代码 1.4链表相关面试OJ题 1.4.1 删除链表中等于给定值 val 的所有节点 1.4.2 反转…...
立创EDA 学习 day01 应用下载安装,基本使用的操作
1.下载网站 1.链接:立创EDA下载-立创EDA官方版-PC下载网 (pcsoft.com.cn) 2.安装立创EDA 1.直接 next (简单的操作) 3.注册账号 1. 最好注册一个账号,等下在原理图转PCB 板的时候要登录,才可以。 4.新建工程 1.新…...
华为OD机试真题Python实现【火星文计算】真题+解题思路+代码(20222023)
火星文计算 题目 已经火星人使用的运算符号为# $ 其与地球人的等价公式如下 x#y=2*x+3*y+4 x$y=3*x+y+2 x y是无符号整数 地球人公式按照 c 语言规则进行计算 火星人公式中$符优先级高于#相同的运算符按从左到右的顺序运算 🔥🔥🔥🔥🔥👉👉👉👉👉👉 华…...
yolov8 修改类别 自定义数据集
yolov8 加载yolo网络模型 yolov8n.yaml nc: 80 # number of classes 分类数量 depth_multiple: 0.33 # scales module repeats 重复规模 width_multiple: 0.25 # scales convolution channels 缩放卷积通道 backbone head 指定配置 coco128.yaml path: ../datasets/coco128 # d…...
Linux环境下验证python项目
公司大佬开发的python rpa跑数项目,Windows运行没问题后,需要搭建一个linux环境进行验证,NOW START! Install VMware官网 下载好之后打开按步骤安装 最后一步会让填许可证(密钥),这里自行百…...
MAC开发使用技巧
1. 查看所有安装的程序 您可以通过以下步骤在 macOS 中查看所有已安装的程序: 点击屏幕左上角的苹果图标,选择“关于本机”。 在打开的窗口中,选择“系统报告”。 在系统报告窗口中,选择“软件”选项卡,然后选择“安…...
数据库分批入库
今天在工作中,遇到一个问题,就是分批查询的时候,由于批次过大导致出现了一些问题,一下是问题描述和解决方案: 示例: // 假设已有数据列表 dataList 和 PreparedStatement pstmt int batchSize 1000; // …...
《C++ 模板》
目录 函数模板 类模板 非类型模板参数 模板特化 函数模板特化 类模板的特化 模板,就像一个模具,里面可以将不同类型的材料做成一个形状,其分为函数模板和类模板。 函数模板 函数模板可以简化函数重载的代码。格式:templa…...
基于PHP的连锁酒店管理系统
有需要请加文章底部Q哦 可远程调试 基于PHP的连锁酒店管理系统 一 介绍 连锁酒店管理系统基于原生PHP开发,数据库mysql,前端bootstrap。系统角色分为用户和管理员。 技术栈 phpmysqlbootstrapphpstudyvscode 二 功能 用户 1 注册/登录/注销 2 个人中…...
《信号与系统》第 6 章 信号与系统的时域和频域特性
目录 6.0 引言 6.1 傅里叶变换的模和相位表示 6.2 线性时不变系统频率响应的模和相位表示 6.2.1 线性与非线性相位 6.2.2 群时延 6.2.3 对数模和相位图 6.3 理想频率选择性滤波器的时域特性 6.4 非理想滤波器的时域和频域特性讨论 6.5 一阶与二阶连续时间系统 6.5.1 …...
Netty自定义协议解析
目录 自定义协议设计 实现消息解码器 实现消息编码器 自定义消息对象 配置ChannelPipeline Netty提供了强大的编解码器抽象基类,这些基类能够帮助开发者快速实现自定义协议的解析。 自定义协议设计 在实现自定义协议解析之前,需要明确协议的具体格式。例如,一个简单的…...
ubuntu清理垃圾
windows和ubuntu 双系统,ubuntu 150GB,开发用,基本不装太多软件。但是磁盘基本用完。 1、查看home目录 sudo du -h -d 1 $HOME | grep -v K 上面的命令查看$HOME一级目录大小,发现 .cache 有26GB,.local 有几个GB&am…...
NLP学习路线图(三十四): 命名实体识别(NER)
一、命名实体识别(NER)是什么? 命名实体识别(Named Entity Recognition, NER)是自然语言处理中的一项关键序列标注任务。其核心目标是从非结构化的文本中自动识别出特定类别的名词性短语,并将其归类到预定义的类别中。 核心目标:找到文本中提到的命名实体,并分类。 典…...
Linux——TCP和UDP
一、TCP协议 1.特点 TCP提供的是面向连接、可靠的、字节流服务。 2.编程流程 (1)服务器端的编程流程 ①socket() 方法创建套接字 ②bind()方法指定套接字使用的IP地址和端口。 ③listen()方法用来创建监听队列。 ④accept()方法处理客户端的连接…...
成工fpga(知识星球号)——精品来袭
(如需要相关的工程文件请关注知识星球:成工fpga,https://t.zsxq.com/DMeqH,关注即送200GB学习资料,链接已置顶!) 《孩子都能学会的FPGA》系列是成工完成的第一个系列,也有一年多的时…...
Centos7.6图文安装mysql8.4详细步骤记录
1 前提条件 1.1 关闭数据库服务器的防火墙 # 关闭数据库服务器的防火墙 systemctl stop firewalld systemctl disable firewalld 1.2 关闭SELinux # 编辑 /etc/selinux/configvi /etc/selinux/config#内容更改为disabledSELINUXdisabled 1.3 卸载系统自身带的mysql&#…...
