当前位置: 首页 > news >正文

cycleGAN算法解读

本文参考:https://blog.csdn.net/Mr_health/article/details/112545671

1 CycleGAN概述 

CycleGAN:循环生成对抗神经网络,是一种非监督学习模型。

Pix2pix方法适用于成对数据的风格迁移,而大多数情况下对于A风格的图像,并没有与之相对应的B风格图像。获取严格意义上的成对数据是非常困难的,所以不依赖成对数据的算法具有非常重要的实际意义。我们所拥有的是一群处于风格A(源域)的图像和一群处于风格B(目标域)的图像,这样pix2pix方法就不管用了。

CycleGAN的创新点在于能够在源域和目标域之间,无须建立训练数据间一对一的映射,就可以实现这种迁移。

2 CycleGAN基本架构

(1)输入

X:源域,风格A的图像

Y:目标域,风格B的图像

(2)两个生成器:

G:用于将风格A的图像x转换为风格B的图像

F:用于将风格B的图像y转换为风格A的图像

(3)Cycle解释

通过G将风格A的图像x转换为风格B的图像Y‘,之后再将Y’通过F后仍然能够转换回风格A,并能保证图像中的内容一致。

通过F将风格B的图像y转换为风格A的图像X‘,之后再将X’通过G后仍然能够转换回风格B,并能保证图像中的内容一致。

也就是训练好G和F就可以自由地完成风格A、B的转换了。

3 损失函数

在训练中引入两个判别器:

Dy:区分真实的风格B的图像与通过G转换而来的假的风格B的图像

Dx:区分真实的风格A的图像与通过G转换而来的假的风格A的图像

损失函数主要由以下几个部分构成:

(1)Dy处的GAN损失:

 (2)Dx处的GAN损失:

(3)循环一致性损失,即cycle解释那块逻辑

 

(4)Identity loss

这个loss的含义是:生成器G用来生成y风格的图像,那么把y送入G应该仍然生成y,只有这样才能证明G具有生成y风格的能力。因此G(y)和y应该尽可能接近。根据论文中的解释,如果不加入该loss,那么生成器可能会自主地修改图像的色调,使得整体的颜色发生变化。

4 CycleGAN网络结构解读

GAN由生成网络(Generator)和辨别(Discriminator)网络两部分组成

Generator网络有2个,分别支持A->B和B->A的转化,其输入输出不会改变维度信息,如下图所示:

Discriminator网络也有2个:

D_A:G_A(A) vs B

D_B:G_B(B) vs A

输入后会改变维度大小,输出channel从3变为1,特征为30*30。如果为真,则与30*30的1进行比较;如果为假,则与30*30的0进行比较。如下图所示:

Generator和Discriminator网络结构如下:

Loss组成:

由Generator的loss和Discriminator的loss两部分组成。

Generator部分的loss:

Loss_G_A = D_A(G_A(A)), #从G的角度生成的B要让D尽量判断为1

Loss_G_B = D_B(G_B(B)), #从G的角度生成的A要让D尽量判断为1

Loss_cycle_A = || G_B(G_A(A)) - A||

Loss_cycle_B = || G_A(G_B(B)) - B||

Loss_idt_A = ||G_A(B) - B||

Loss_idt_B = ||G_B(A) - A||

Loss_G = Loss_G_A + Loss_G_B + Loss_cycle_A + Loss_cycle_B + Loss_idt_A + Loss_idt_B

Discriminator部分的loss:

Loss_D = criterionGAN (netD(real), true) + criterionGAN(netD(fake), false)

从D的角度,G生成的要尽量判断为0,真实的要尽量判断为1。

 5 代码解读

(1)前向传播部分:

NetG_A就是G,完成A->B的风格转换(源域到目标域)

NetG_B就是F,完成B->A的风格转换(目标域到源域)   

 def forward(self):"""Run forward pass; called by both functions <optimize_parameters> and <test>."""self.fake_B = self.netG_A(self.real_A)  # G_A(A)self.rec_A = self.netG_B(self.fake_B)   # G_B(G_A(A))self.fake_A = self.netG_B(self.real_B)  # G_B(B)self.rec_B = self.netG_A(self.fake_A)   # G_A(G_B(B))

(2)更新G

在if lambda_idt > 0:这个分支内,实现的就是identity loss。

后面就是GAN损失(loss_G_A、 loss_G_B)以及循环一致性损失(loss_cycle_A、loss_cycle_B)

代码里面的判别器netD_A判断的是真实B风格和生成B风格的真假,相当于论文中的Dy。

同理netD_B判断的是真实A风格和生成A风格的真假,相当于论文中的Dx。   

 def backward_G(self):"""Calculate the loss for generators G_A and G_B"""lambda_idt = self.opt.lambda_identitylambda_A = self.opt.lambda_Alambda_B = self.opt.lambda_B# Identity lossif lambda_idt > 0:# G_A should be identity if real_B is fed: ||G_A(B) - B||self.idt_A = self.netG_A(self.real_B)  #将真实的B送入netG_A(A->B风格生成器)生成的应该还是B风格self.loss_idt_A = self.criterionIdt(self.idt_A, self.real_B) * lambda_B * lambda_idt# G_B should be identity if real_A is fed: ||G_B(A) - A||self.idt_B = self.netG_B(self.real_A) #将真实的A送入netG_B(B->A风格生成器)生成的应该还是A风格self.loss_idt_B = self.criterionIdt(self.idt_B, self.real_A) * lambda_A * lambda_idtelse:self.loss_idt_A = 0self.loss_idt_B = 0# GAN loss D_A(G_A(A))self.loss_G_A = self.criterionGAN(self.netD_A(self.fake_B), True)# GAN loss D_B(G_B(B))self.loss_G_B = self.criterionGAN(self.netD_B(self.fake_A), True)# Forward cycle loss || G_B(G_A(A)) - A||self.loss_cycle_A = self.criterionCycle(self.rec_A, self.real_A) * lambda_A# Backward cycle loss || G_A(G_B(B)) - B||self.loss_cycle_B = self.criterionCycle(self.rec_B, self.real_B) * lambda_B# combined loss and calculate gradientsself.loss_G = self.loss_G_A + self.loss_G_B + self.loss_cycle_A + self.loss_cycle_B + self.loss_idt_A + self.loss_idt_Bself.loss_G.backward()

(3)更新D:

  

  def backward_D_A(self):"""Calculate GAN loss for discriminator D_A"""fake_B = self.fake_B_pool.query(self.fake_B)self.loss_D_A = self.backward_D_basic(self.netD_A, self.real_B, fake_B)def backward_D_B(self):"""Calculate GAN loss for discriminator D_B"""fake_A = self.fake_A_pool.query(self.fake_A)self.loss_D_B = self.backward_D_basic(self.netD_B, self.real_A, fake_A)

(4)生成器结构

一共由3个卷积层 + 5个残差块 + 3个卷积层构成。

这里没有用到池化等操作,在开始卷积层中(第二层、第三层)进行了下采样,在最后的3个卷积层中进行了上采样,这样最直接的就是减少了计算复杂度。另外还有一个好处是感受野增大,卷积下采样会增大有效区域。

5个残差块都是使用相同个数的(128)滤镜核,每个残差块中都有2个卷积层(3*3核),这里的卷积层中没有标准的0填充(padding),因为使用0填充会使生成出的图像的边界出现严重伪影。为了保证输入输出图像大小不改变,在图像初始输入部分加入了反射填充。

这里的残差网络不是使用何凯明的残差网络,卷积之后没有Relu,而是使用了Gross and Wilber的残差网络,后面这种方法验证在图像分类算法上面效果比较好。

相关文章:

cycleGAN算法解读

本文参考&#xff1a;https://blog.csdn.net/Mr_health/article/details/112545671 1 CycleGAN概述 CycleGAN&#xff1a;循环生成对抗神经网络&#xff0c;是一种非监督学习模型。 Pix2pix方法适用于成对数据的风格迁移&#xff0c;而大多数情况下对于A风格的图像&#xf…...

解读“方差”

其实&#xff0c;从这个标题就可以看出来&#xff0c;方差&#xff0c;这个问题不简单&#xff0c; 先给出定义&#xff1a; 方差其实应该叫&#xff0c;差方差&#xff0c;&#xff08;差方&#xff09;差&#xff0c;差的平方的差&#xff0c;与差的平方之间的误差&#xff0…...

记录面试问题

以下问题不分先后&#xff0c;按照印象深浅排序&#xff0c;可能一次记录不完成&#xff0c;后面想起来会及时补充&#xff0c;如有不对&#xff0c;恳请各位围观大佬多多指教&#x1f64f; 印象最深的是一道很简单很简单的题目&#xff0c;我结束面试之后赶紧代码敲敲发现答错…...

(六十四)设计索引的时候,我们一般要考虑哪些因素呢?(上)

本周我们将要讲解一下设计索引的时候&#xff0c;我们通常应该考虑哪些因素&#xff0c;给哪些字段建立索引&#xff0c;如何建立索引&#xff0c;建立好索引之后应该如何使用才是最合适的。 可能有的朋友会希望尽快更新后面的内容&#xff0c;但是因为工作的原因的确非常忙&a…...

【蓝桥杯嵌入式】LCD屏的原理图解析与代码实现(第十三届省赛为例)——STM32

&#x1f38a;【蓝桥杯嵌入式】专题正在持续更新中&#xff0c;原理图解析✨&#xff0c;各模块分析✨以及历年真题讲解✨都在这儿哦&#xff0c;欢迎大家前往订阅本专题&#xff0c;获取更多详细信息哦&#x1f38f;&#x1f38f;&#x1f38f; &#x1fa94;本系列专栏 - 蓝…...

论文学习——Reproducing Activation Function for Deep Learning

论文学习——Reproducing Activation Function Abstract RAFs将集中基础激活函数进行线性组合,构建出神经元级的、数据驱动的激活函数。使用RAFs为激活函数的神经网络可以重现传统的近似工具,也能相对于传统网络以更少的参数量拟合目标函数。训练过程中,RAFs可以以更好的条…...

【趣味学Python】Python基础语法讲解

目录 编码 标识符 python保留字 注释 实例(Python 3.0) 实例(Python 3.0) 行与缩进 实例(Python 3.0) 实例 多行语句 数字(Number)类型 字符串(String) 实例(Python 3.0) 空行 等待用户输入 实例(Python 3.0) 同一行显示多条语句 实例(Python 3.0) 多个语句构…...

虚拟局域网VLAN的实现机制

虚拟局域网VLAN的实现机制1.IEEE 802.1Q帧2.交换的端口类型AccessTrunkHybrid&#xff08;华为特有&#xff09;1.IEEE 802.1Q帧 IEEE802.1Q帧&#xff08;也称Dot One Q帧&#xff09;对以太网的MAC帧格式进行了扩展&#xff0c;插入了4字节的VLAN标记。 2.交换的端口类型 A…...

Mask R-CNN 算法学习总结

Mask R-CNN 相关知识点整体框架1.Resnet 深度残差学习1.1 目的1.2 深度学习深度增加带来的问题1.3 Resnet实现思想【添加恒等映射】2.线性插值2.1 目的2.2 线性插值原理2.3 为什么使用线性插值?3.FPN 特征金字塔3.1 FPN介绍3.2 为什么使用FPN?3.3 自下而上层【提取特征】3.4 …...

Gorm -- 添加记录

文章目录添加单条记录直接添加模型对象赋予默认值方法一&#xff1a; gorm 标签赋予默认值方法二&#xff1a; 设置钩子方法&#xff08;Hooks&#xff09;指定字段插入插入时忽略某些字段插入时禁止使用钩子方法添加多条记录通过对象列表插入通过字典列表插入在字典中使用SQL内…...

go提高升阶(四) I/O流学习

I/O 官网课程 购买课程找博主推荐 文章目录I/O文件信息创建文件、目录IO读IO写(权限)文件复制Seeker接口断点续传遍历文件夹bufio电脑中一切&#xff0c;都是以 二进制流的形式存在的。jpg&#xff1a;010100000010010101001010101010010101010 编码格式&#xff0c;还原为一个…...

【代码随想录训练营】【Day28】第七章|回溯算法|93.复原IP地址|78.子集|90.子集II

复原IP地址 题目详细&#xff1a;LeetCode.93 这道题与上一道练习题分割回文字符串十分详细&#xff0c;一样是涉及到分割字符串、判断字符串、递归与回溯的问题&#xff0c;所以这道题要解决的难点在于&#xff1a; 如何分割IP地址字符串如何判断分割的IP地址是否合法递归的…...

Get请求和Post请求区别

前后端交互请求数据的方式有很多种。 例如&#xff1a;Get Post Put Patch Delete Copy 等等很多请求方式 但是用的最多的就是Get和Post Get请求方式 1. get多用于从服务器请求获取数据 2.get传送的数据量较小&#xff0c;不能大于2KB 3.get安全性非常低 Post请求方式 1.…...

static关键字

static的基本基本用法可以分为下面几种&#xff1a; &#xff08;1&#xff09;static修饰全局变量 &#xff08;2&#xff09; 修饰局部变量 &#xff08;3&#xff09;修饰普通函数 &#xff08;4&#xff09;修饰类的成员变量 一、static修饰全局变量 当同时编译多个文件时…...

A Comprehensive Tool for Modeling CMOS Image-Sensor-Noise Performance论文总结及翻译

A Comprehensive Tool for Modeling CMOS Image-Sensor-Noise Performance Author: Ryan D. Gow Link: https://ieeexplore.ieee.org/document/4215175/metrics#metrics Select: ⭐️⭐️⭐️⭐️ Type: Academic Journal 备注: CMOS图像传感器噪声性能建模的综合工具 总结 …...

嘀嗒出行再闯IPO:千军万马我无懈

羽扇纶巾笑谈间&#xff0c;千军万马我无懈。 在激烈竞争中再度冲刺港交所IPO的嘀嗒出行&#xff0c;闪露出一丝歌词里的气魄。交通运输部下属网约车监管信息交互系统的数据显示&#xff0c;截至2023年1月31日&#xff0c;全国共有300家网约车平台公司取得网约车平台经营许可。…...

MATLAB算法实战应用案例精讲-【优化算法】增强型鲸鱼优化算法(EWOA)(附matlab代码实现)

前言 增强型鲸鱼优化算法(Enhanced Whale Optimization Algorithm,EWOA)是Mohammad H. Nadimi-Shahraki等人于2022年提出的一种改进算法。由于标准的鲸鱼优化算法及其它的改进算法都存在种群多样性低和搜索策略差的问题,因此引入有效的策略来缓解鲸鱼优化算法的这些核心缺点…...

登录Oracle数据库遇到ORA-01017密码错误的解决办法

文章目录症状分析解决办法欢迎加下方我的微信&#x1f447;&#xff0c;拉你入学习群我们在登录Oracle数据库时可能会遇到ORA-01017错误&#xff0c;这里分析原因并提供解决办法。点击试看博主的专著《MySQL 8.0运维与优化》&#xff08;清华大学出版社&#xff09; 症状 图像…...

10个黑客基础教程!简单有效

如果你的电脑运行缓慢&#xff0c;请使用下面介绍的方法来帮助加速、优化和提高电脑的性能。 1.关闭启动时自动运行的应用程序 计算机上安装的许多应用程序都可以将自己配置为在启动期间自动启动并继续在后台运行&#xff0c;但是&#xff0c;如果不是每天都使用这些应用程序…...

JPA之实体之间的关系

JPA之实体之间的关系 10.1.1实体类创建 注解的应用 Table&#xff0c;Entity IdGeneratedValue指定主键&#xff0c;Column P174 实体类编写规范 Table(name "t_user") Entity(name "User") public class User implements Serializable {IdGeneratedVa…...

华为云AI开发平台ModelArts

华为云ModelArts&#xff1a;重塑AI开发流程的“智能引擎”与“创新加速器”&#xff01; 在人工智能浪潮席卷全球的2025年&#xff0c;企业拥抱AI的意愿空前高涨&#xff0c;但技术门槛高、流程复杂、资源投入巨大的现实&#xff0c;却让许多创新构想止步于实验室。数据科学家…...

vscode里如何用git

打开vs终端执行如下&#xff1a; 1 初始化 Git 仓库&#xff08;如果尚未初始化&#xff09; git init 2 添加文件到 Git 仓库 git add . 3 使用 git commit 命令来提交你的更改。确保在提交时加上一个有用的消息。 git commit -m "备注信息" 4 …...

SkyWalking 10.2.0 SWCK 配置过程

SkyWalking 10.2.0 & SWCK 配置过程 skywalking oap-server & ui 使用Docker安装在K8S集群以外&#xff0c;K8S集群中的微服务使用initContainer按命名空间将skywalking-java-agent注入到业务容器中。 SWCK有整套的解决方案&#xff0c;全安装在K8S群集中。 具体可参…...

【Linux】shell脚本忽略错误继续执行

在 shell 脚本中&#xff0c;可以使用 set -e 命令来设置脚本在遇到错误时退出执行。如果你希望脚本忽略错误并继续执行&#xff0c;可以在脚本开头添加 set e 命令来取消该设置。 举例1 #!/bin/bash# 取消 set -e 的设置 set e# 执行命令&#xff0c;并忽略错误 rm somefile…...

K8S认证|CKS题库+答案| 11. AppArmor

目录 11. AppArmor 免费获取并激活 CKA_v1.31_模拟系统 题目 开始操作&#xff1a; 1&#xff09;、切换集群 2&#xff09;、切换节点 3&#xff09;、切换到 apparmor 的目录 4&#xff09;、执行 apparmor 策略模块 5&#xff09;、修改 pod 文件 6&#xff09;、…...

Spring Boot 实现流式响应(兼容 2.7.x)

在实际开发中&#xff0c;我们可能会遇到一些流式数据处理的场景&#xff0c;比如接收来自上游接口的 Server-Sent Events&#xff08;SSE&#xff09; 或 流式 JSON 内容&#xff0c;并将其原样中转给前端页面或客户端。这种情况下&#xff0c;传统的 RestTemplate 缓存机制会…...

【ROS】Nav2源码之nav2_behavior_tree-行为树节点列表

1、行为树节点分类 在 Nav2(Navigation2)的行为树框架中,行为树节点插件按照功能分为 Action(动作节点)、Condition(条件节点)、Control(控制节点) 和 Decorator(装饰节点) 四类。 1.1 动作节点 Action 执行具体的机器人操作或任务,直接与硬件、传感器或外部系统…...

SpringTask-03.入门案例

一.入门案例 启动类&#xff1a; package com.sky;import lombok.extern.slf4j.Slf4j; import org.springframework.boot.SpringApplication; import org.springframework.boot.autoconfigure.SpringBootApplication; import org.springframework.cache.annotation.EnableCach…...

docker 部署发现spring.profiles.active 问题

报错&#xff1a; org.springframework.boot.context.config.InvalidConfigDataPropertyException: Property spring.profiles.active imported from location class path resource [application-test.yml] is invalid in a profile specific resource [origin: class path re…...

JAVA后端开发——多租户

数据隔离是多租户系统中的核心概念&#xff0c;确保一个租户&#xff08;在这个系统中可能是一个公司或一个独立的客户&#xff09;的数据对其他租户是不可见的。在 RuoYi 框架&#xff08;您当前项目所使用的基础框架&#xff09;中&#xff0c;这通常是通过在数据表中增加一个…...