施密特正交
描述
给出一个向量组原始基,通过施密特正交化、单位化,构造出标准正交基。
输入
本题有多组测试数据。每组测试数据在第一行给出两个正整数t,n,表示有t个n维向量。随后t行每行给出n个实数表示一个向量。
输出
每行输出一个向量,用空格分隔每个分量。保留3位小数。
样例输入
3 3
0 1 1
1 1 0
1 0 1
样例输出
0.000 0.707 0.707
0.816 0.408 -0.408
0.577 -0.577 0.577
code
#include <stdio.h>
#include <stdlib.h>
#include <math.h>// 计算向量点积
double dotProduct(const double* v1, const double* v2, int n) {double result = 0.0;for (int i = 0; i < n; i++) {result += v1[i] * v2[i];}return result;
}// 计算向量长度
double vectorLength(const double* v, int n) {double result = 0.0;for (int i = 0; i < n; i++) {result += v[i] * v[i];}return sqrt(result);
}// 施密特正交化 该函数接收一个二维指针vectors,表示向量组,以及两个整数t和n,
//分别表示向量组中向量的个数和每个向量的维度。该函数实现施密特正交化的算法
void gramSchmidt(double** vectors, int t, int n) {for (int i = 0; i < t; i++) {for (int j = 0; j < i; j++) {double projection = dotProduct(vectors[i], vectors[j], n) / dotProduct(vectors[j], vectors[j], n); //projection 就是向量 vectors[i] 在向量 vectors[j] 上的投影长度,//它除以向量 vectors[j] 的长度的平方,就是公式中的分式部分,用于计算投影向量的系数。for (int k = 0; k < n; k++) {vectors[i][k] -= projection * vectors[j][k];}}}
}// 单位化向量
void normalize(double* v, int n) {double length = vectorLength(v, n);for (int i = 0; i < n; i++) {v[i] /= length;}
}int main() {int t, n;while (scanf("%d%d", &t, &n) == 2) {// 读入向量组double** vectors = (double**)malloc(t * sizeof(double*));for (int i = 0; i < t; i++) {vectors[i] = (double*)malloc(n * sizeof(double));for (int j = 0; j < n; j++) {scanf("%lf", &vectors[i][j]);}}// 施密特正交化gramSchmidt(vectors, t, n);// 单位化向量for (int i = 0; i < t; i++) {normalize(vectors[i], n);}// 输出结果for (int i = 0; i < t; i++) {for (int j = 0; j < n-1; j++) {printf("%.3f ", vectors[i][j]);}printf("%.3f",vectors[i][n-1]); printf("\n");}// 释放内存for (int i = 0; i < t; i++) {free(vectors[i]);}free(vectors);}return 0;
}
对样例解释(理解的的人可跳过)
Eg.对于vectors=
{1,1,1,1
1,-1,0,4
3,5,1,-1}
-
i=0
j不存在
对于for(k=……)也不执行
vectors不变 仍为vectors=
{1,1,1,1
1,-1,0,4
3,5,1,-1}
-
i=1
Projection=4/4=1
For(k=……)-
vectors[1][0]-=1*vectors[0][0](vectors[0][0]=1)
-
vectors[1][0]变成0
-
-
vectors[1][1]-=1*vectors[0][1](vectors[0][1]=1)
-
vectors[1][1]变成-2
-
-
vectors[1][2]-=1*vectors[0][2](vectors[0][2]=1)
-
vectors[1][2]变成-1
-
-
vectors[1][3]-=1*vectors[0][3](vectors[0][3]=1)
-
vectors[1][3]变成3
-
-
j=0
-
vectors=
{1,1,1,1
0,-2,-1,3
3,5,1,-1}
-
i=2
Projection=(3*1+5*1+1-1)/4=8/4=2
For(k=……)-
vectors[2][0]-=2*vectors[0][0](vectors[0][0]=1)
-
vectors[2][0]变成1
-
-
vectors[2][1]-=2*vectors[0][1](vectors[0][1]=1)
-
vectors[2][1]变成3
-
-
vectors[2][2]-=2*vectors[0][2](vectors[0][2]=1)
-
vectors[2][2]变成-1
-
-
vectors[2][3]-=2*vectors[0][3](vectors[0][3]=1)
-
vectors[2][3]变成-3
-
对于vectors=
{1,1,1,1
0,-2,-1,3
1,3,-1,-3}
attention:在解这题时vectors[2][ ]不改变(起始vectors[2][ ]为3,5,1,-1)
3*0-2*5-1*1-1*3=-14=1*0-2*3+(-1)*(-1)-3*(3)(点乘不变)
Projection=(0-6+1-9)/14=-14/14=-1
For(k=……)-
vectors[3][0]-=(-1)*vectors[1][0](vectors[1][0]=0)
-
vectors[3][0]变成1
-
-
vectors[3][1]-=(-1)*vectors[1][1](vectors[1][1]=-2)
-
vectors[3][1]变成1
-
-
vectors[3][2]-=(-1)*vectors[1][2](vectors[1][2]=-1)
-
vectors[3][2]变成-2
-
-
vectors[3][3]-=(-1)*vectors[1][3](vectors[1][3]=3)
-
vectors[3][3]变成0
-
-
j=0
-
j=1
-
对于vectors=
{1,1,1,1
0,-2,-1,3
1,1,-2,0}
接下来就是单位化
相关文章:
施密特正交
描述 给出一个向量组原始基,通过施密特正交化、单位化,构造出标准正交基。 输入 本题有多组测试数据。每组测试数据在第一行给出两个正整数t,n,表示有t个n维向量。随后t行每行给出n个实数表示一个向量。 输出 每行输出一个向量…...
视频号小店怎么起量?实操详解!
我是电商珠珠 视频号小店于22年由视频号团队发展起来,跟抖音小店一样,都是电商平台。 目前对于视频号小店来说,正是风口期,就像19年的抖音小店一样,月入5w是没一点问题的。 去年的视频号小店还没有掀起多大的波浪&a…...
如何将unity项目托管到github(快速便捷)
如何将unity项目托管到github(快速便捷) 文章目录 如何将unity项目托管到github(快速便捷)前置准备Gitgithubgit-lfs 具体操作1.配置.gitignore文件2.配置.gitattributes3.使用git 前置准备 Git github git-lfs 这些内容省略&…...
ClickHouse(16)ClickHouse日志引擎Log详细解析
日志引擎系列 这些引擎是为了需要写入许多小数据量(少于一百万行)的表的场景而开发的。 这系列的引擎有: StripeLogLogTinyLog 共同属性 引擎: 数据存储在磁盘上。 写入时将数据追加在文件末尾。 不支持突变操作,也就是更新…...
opencv项目开发实战--填补字母的空白
目录 完成/填写字母 OpenCV C++ 完成opencv表中缺失的行 如何使用 OpenCV 获取图像中所有文本的位置? 完成/填写字母 OpenCV C++ 解决方案一: 您似乎已经对图像进行了...
Wnmp本地搭建结合内网穿透实现远程访问本地Wnmp服务
文章目录 前言1.Wnmp下载安装2.Wnmp设置3.安装cpolar内网穿透3.1 注册账号3.2 下载cpolar客户端3.3 登录cpolar web ui管理界面3.4 创建公网地址 4.固定公网地址访问 正文开始前给大家推荐个网站,前些天发现了一个巨牛的 人工智能学习网站, 通俗易懂&a…...
C++ 红黑树的封装
一.map/set的封装 在实现了红黑树的部分功能后,我们可以便可以将红黑树作为底层结构来封装map 和 set ,但是问题也随之而来。我们都知道map是k-v的数据模型,而set是k的数据模型,我们难道要去使用两棵红黑树来封装吗?显…...
MongoDB快速入门及其SpringBoot实战
MongoDB快速入门及其SpringBoot实战 MongoDB简介 MongoDB 是一个基于分布式文件存储的数据库。由 C 语言编写。旨在为 WEB 应用提供可扩展的高性能数据存储解决方案。 MongoDB是一个开源、高性能、无模式的文档型数据库,当初的设计就是用于简化开发和方便扩展&am…...
Python网络爬虫练习
爬取历年中国大学排名(前20名),并随机选取一所高校画图展示其历年总分变化,并计算平均分,在图上展示该平均分直线: 代码如下: import matplotlib.pyplot as plt import pandas as pd import requests import randomdef main(yea…...
《opencv实用探索·九》中值滤波简单理解
1、引言 均值滤波、方框滤波、高斯滤波,都是线性滤波方式。由于线性滤波的结果是所有像素值的线性组合,因此含有噪声的像素也会被考虑进去,噪声不会被消除,而是以更柔和的方式存在。这时使用非线性滤波效果可能会更好。中值滤波是…...
PC行内编辑
点击编辑,行内编辑输入框出现,给列表的每条数据定义编辑标记,最后一定记得 v-model双向绑定,使数据回显。 步骤: 1、给行数据定义编辑标记 2、点击行编辑标记(isedit) 3、插槽根据标记渲染表单 …...
鸿蒙开发:Stage模型开发-应用/组件级配置以及UIAbility组件初步使用【鸿蒙专栏-20】
文章目录 Stage模型开发概述基本概念UIAbility组件和ExtensionAbility组件WindowStageContextAbilityStage开发流程应用组件开发了解进程模型了解线程模型应用配置文件应用版本声明配置Module支持的设备类型配置Module权限配置进阶应用配置...
Django回顾【五】
目录 一、多表操作 【1】基于对象的跨表查 【2】基于双下滑线的连表查 【3】related_name 二、聚合查询与分组查询 【1】聚合查询 【2】分组查询 三、F与Q查询 【1】F查询 【2】Q查询 四、其他字段和字段参数 【1】其他字段 【2】ORM字段参数 【3】ForeignKey 属…...
Python容器——字典
Key——Value 键值对...
基于Java SSM框架实现实现四六级英语报名系统项目【项目源码+论文说明】
基于java的SSM框架实现四六级英语报名系统演示 摘要 本论文主要论述了如何使用JAVA语言开发一个高校四六级报名管理系统,本系统将严格按照软件开发流程进行各个阶段的工作,采用B/S架构,面向对象编程思想进行项目开发。在引言中,作…...
翻硬币(第四届蓝桥杯省赛C++B组)(java版)
//翻硬币,每次都会改变两个硬币的状态 //因此我们可以从前往后枚举,s1[i] 与 s2[i] 状态不同就改变它的状态 //同时s1[i 1] 与 s2[i 1] 的状态会因此改变 // 所以继续往下枚举s1[i 1] 与 s2[i 1] //因为题目有说必须有解,因此枚举到 n - 1位的时候,两个字符串的…...
原生GPT本地及云端部署方式保姆级教程
前提条件 部署必须要有一个超过1年的Github账号 本地服务部署 运行效果 部署方法 下载安装包 暂时无法在飞书文档外展示此内容 GitHub授权登录: https://dash.pandoranext.com/ 登录后是这个样子: 复制下面红框里面这个License Id 编辑Config.js…...
Docker容器(一)概述
一、虚拟化概述 1.1引⼊虚拟化技术的必要性 服务器只有5%的时间是在⼯作的;在其它时间服务器都处于“休眠”状态. 虚拟化前 每台主机⼀个操作系统; 软硬件紧密结合; 在同⼀个主机上运⾏多个应⽤程序通常会遭遇冲突; 系统的资源利⽤率低; 硬件成本⾼昂⽽且不够灵活…...
Facebook引流怎么做?写个脚本就好!
在当今的数字化时代,流量对于任何一个网站或应用程序来说都至关重要,Facebook,作为全球最大的社交网络平台,无疑是一个获取流量的绝佳场所,但是,如何有效地从Facebook引流呢?写个脚本就好了! 在本文中&am…...
自动化集成有哪些典型应用场景?
为什么要做自动化场景集成? 主要分为以下几点: 提高效率/减少错误:减少人工操作、人为错误、人力成本,提高生产效率、生产质量和稳定性。 提高可靠性:提高系统的可靠性和稳定性,减少系统故障和停机时间。…...
FastAPI 教程:从入门到实践
FastAPI 是一个现代、快速(高性能)的 Web 框架,用于构建 API,支持 Python 3.6。它基于标准 Python 类型提示,易于学习且功能强大。以下是一个完整的 FastAPI 入门教程,涵盖从环境搭建到创建并运行一个简单的…...
蓝牙 BLE 扫描面试题大全(2):进阶面试题与实战演练
前文覆盖了 BLE 扫描的基础概念与经典问题蓝牙 BLE 扫描面试题大全(1):从基础到实战的深度解析-CSDN博客,但实际面试中,企业更关注候选人对复杂场景的应对能力(如多设备并发扫描、低功耗与高发现率的平衡)和前沿技术的…...
vue3 定时器-定义全局方法 vue+ts
1.创建ts文件 路径:src/utils/timer.ts 完整代码: import { onUnmounted } from vuetype TimerCallback (...args: any[]) > voidexport function useGlobalTimer() {const timers: Map<number, NodeJS.Timeout> new Map()// 创建定时器con…...
LLM基础1_语言模型如何处理文本
基于GitHub项目:https://github.com/datawhalechina/llms-from-scratch-cn 工具介绍 tiktoken:OpenAI开发的专业"分词器" torch:Facebook开发的强力计算引擎,相当于超级计算器 理解词嵌入:给词语画"…...
高效线程安全的单例模式:Python 中的懒加载与自定义初始化参数
高效线程安全的单例模式:Python 中的懒加载与自定义初始化参数 在软件开发中,单例模式(Singleton Pattern)是一种常见的设计模式,确保一个类仅有一个实例,并提供一个全局访问点。在多线程环境下,实现单例模式时需要注意线程安全问题,以防止多个线程同时创建实例,导致…...
JVM虚拟机:内存结构、垃圾回收、性能优化
1、JVM虚拟机的简介 Java 虚拟机(Java Virtual Machine 简称:JVM)是运行所有 Java 程序的抽象计算机,是 Java 语言的运行环境,实现了 Java 程序的跨平台特性。JVM 屏蔽了与具体操作系统平台相关的信息,使得 Java 程序只需生成在 JVM 上运行的目标代码(字节码),就可以…...
Caliper 负载(Workload)详细解析
Caliper 负载(Workload)详细解析 负载(Workload)是 Caliper 性能测试的核心部分,它定义了测试期间要执行的具体合约调用行为和交易模式。下面我将全面深入地讲解负载的各个方面。 一、负载模块基本结构 一个典型的负载模块(如 workload.js)包含以下基本结构: use strict;/…...
【Linux手册】探秘系统世界:从用户交互到硬件底层的全链路工作之旅
目录 前言 操作系统与驱动程序 是什么,为什么 怎么做 system call 用户操作接口 总结 前言 日常生活中,我们在使用电子设备时,我们所输入执行的每一条指令最终大多都会作用到硬件上,比如下载一款软件最终会下载到硬盘上&am…...
Unity中的transform.up
2025年6月8日,周日下午 在Unity中,transform.up是Transform组件的一个属性,表示游戏对象在世界空间中的“上”方向(Y轴正方向),且会随对象旋转动态变化。以下是关键点解析: 基本定义 transfor…...
第八部分:阶段项目 6:构建 React 前端应用
现在,是时候将你学到的 React 基础知识付诸实践,构建一个简单的前端应用来模拟与后端 API 的交互了。在这个阶段,你可以先使用模拟数据,或者如果你的后端 API(阶段项目 5)已经搭建好,可以直接连…...
