当前位置: 首页 > news >正文

YOLOV7模型调试记录

先前的YOLOv7模型是pytorch重构的,并非官方提供的源码,而在博主使用自己的数据集进行实验时发现效果并不理想,因此生怕是由于源码重构导致该问题,此外还需进行对比实验,因此便从官网上下载了源码,进行调试运行。

环境配置

由于博主先前曾经运行过pytorch版本的yolov7,因此这次就沿用那个虚拟环境了。
有需要了解相关配置的可以参考博主这篇博客:

写在前面,关于YOLOv7的代码中有个wandb大家可以将其关闭,因为这个实际上没有啥用途反而在运行中会造成下载屏障,配置错误等问题,关闭方法打开下面这个文件:

在这里插入图片描述

随后在开头代码:

try:import wandbfrom wandb import init, finish
except ImportError:wandb = None

后加上wandb = None,即为:

在这里插入图片描述

测试

将源码下载完成后,先进行简单测试看看环境是否符合,可以先运行detect.py,修改下其中的预训练模型文件:这里建议大家手动下载。

parser.add_argument('--weights', nargs='+', type=str, default='./weights/yolov7.pt', help='model.pt path(s)')

其余的就不用动了,运行成果后会提示你将检测结果放到相应文件夹:

在这里插入图片描述

测试结果:

在这里插入图片描述

训练调试

这个才是我们的重头戏
其实这个配置并不难,我们使用的是YOLO格式的数据集,该数据集就是先前博主在运行YOLOv8模型时制作的。
具体制作过程参考博主这篇博文:

YOLOv8调试记录

主要便是执行下面这段代码,即将VOC格式数据集转换为YOLO格式

在这里插入图片描述

随后创建数据集配置文件

在这里插入图片描述

然后修改train.py中的相关配置:分别对应预训练模型参数,模型框架与数据集配置文件,此外还需修改epochs和batch-size等。

此外,如果有条件的话,num_workers也尽量调大些,这是程序所能调用的线程数目,项目的运行速度不但取决于GPU性能,同时与数据集加载速度有关,博主先前忘记调整使用的是默认值0,此时项目运行极慢,一晚上才跑了40epochs,查询GPU使用情况,发现很多适合GPU都处于空载状态,这就造成了极大的浪费。修改num_worker后,项目运行所占用的显存就会增加,这时还要适当的调整batch-size,而batch-size调小后速度会变快,但却不易收敛。
这里博主设置num-workers为6,batch-size=12,此时的CPU利用率就达到了70%左右。而GPU占用显存为8G。

在这里插入图片描述

  1. 每次dataloader加载数据时:dataloader一次性创建num_worker个worker,(也可以说dataloader一次性创建num_worker个工作进程,worker也是普通的工作进程),并用batch_sampler将指定batch分配给指定worker,worker将它负责的batch加载进RAM。

    然后,dataloader从RAM中找本轮迭代要用的batch,如果找到了,就使用。如果没找到,就要num_worker个worker继续加载batch到内存,直到dataloader在RAM中找到目标batch。一般情况下都是能找到的,因为batch_sampler指定batch时当然优先指定本轮要用的batch。

  2. num_worker设置得大,好处是寻batch速度快,因为下一轮迭代的batch很可能在上一轮/上上一轮…迭代时已经加载好了。坏处是内存开销大,也加重了CPU负担(worker加载数据到RAM的进程是CPU复制的嘛)。num_workers的经验设置值是自己电脑/服务器的CPU核心数,如果CPU很强、RAM也很充足,就可以设置得更大些。

  3. 如果num_worker设为0,意味着每一轮迭代时,dataloader不再有自主加载数据到RAM这一步骤(因为没有worker了),而是在RAM中找batch,找不到时再加载相应的batch。缺点当然是速度更慢。

随后我们还需修改模型配置文件中检测的类别数

在这里插入图片描述

随后我们运行train.py文件就OK了:这里由于博主使用了一小部分数据集所以效果并不理想,稍后会将其上传至服务器上进行实验。

在这里插入图片描述
在这里插入图片描述

关于batch-size的影响:

batchsize越小,一个batch中的随机性越大,越不易收敛。然而batchsize越小,速度越快,权值更新越频繁;且具有随机性,对于非凸损失函数来讲,更便于寻找全局最优。从这个角度看,收敛更快,更容易达到全局最优。

batchsize越大,越能够表征全体数据的特征,其确定的梯度下降方向越准确,(因此收敛越快),且迭代次数少,总体速度更快。然而大的batchsize相对来讲缺乏随机性,容易使梯度始终向单一方向下降,陷入局部最优;而且当batchsize增大到一定程度,再增大batchsize,一次batch产生的权值更新(即梯度下降方向)基本不变。因此理论上存在一个最合适的batchsize值,使得训练能够收敛最快或者收敛效果最好(全局最优点)。

相关文章:

YOLOV7模型调试记录

先前的YOLOv7模型是pytorch重构的,并非官方提供的源码,而在博主使用自己的数据集进行实验时发现效果并不理想,因此生怕是由于源码重构导致该问题,此外还需进行对比实验,因此便从官网上下载了源码,进行调试运…...

模拟光伏不确定性——拉丁超立方抽样生成及缩减场景(Matlab全代码)

光伏出力的不确定性主要源于预测误差,而研究表明预测误差(e)服从正态分布且大概为预测出力的10%。本代码采用拉丁超立方抽样实现场景生成[1,2]、基于概率距离的快速前代消除法实现场景缩减[3],以此模拟了光伏出力的不确定性。与风电不确定性模拟不同之处在于——光伏存在0出…...

Elasticsearch聚合查询速览

Es 数据分析工具 - Elasticsearch Aggregations (聚合查询) 官方文档 Aggregations | Elasticsearch Guide [7.15] | Elastic 1. Bucket aggregations 桶聚合 that group documents into buckets, also called bins, based on field values, ranges, o…...

CEC2017:鱼鹰优化算法(Osprey optimization algorithm,OOA)求解cec2017(提供MATLAB代码)

一、鱼鹰优化算法简介 鱼鹰优化算法(Osprey optimization algorithm,OOA)由Mohammad Dehghani 和 Pavel Trojovsk于2023年提出,其模拟鱼鹰的捕食行为。 鱼鹰是鹰形目、鹗科、鹗属的仅有的一种中型猛禽。雌雄相似。体长51-64厘米…...

Vue3 企业级项目实战:通关 Vue3 企业级项目开发,升职加薪快人一步

Vue3 企业级项目实战 - 程序员十三 - 掘金小册Vue3 Element Plus Spring Boot 企业级项目开发,升职加薪,快人一步。。「Vue3 企业级项目实战」由程序员十三撰写,2744人购买https://s.juejin.cn/ds/S2RkR9F/ 课程介绍 很高兴为大家介绍这个…...

vue样式绑定(v-if)

文章目录一.第一次用vue框架二.要求:1.定义两种样式,一种描述正确的状态,一种描述错误的状态。2.在结构代码中定义一个块,实现绑定正确的样式状态。3.定义一个按钮,实现正确和错误两种状态的class切换。三.源代码四.效果一.第一次…...

无需公网IP,安全稳定实现U8C异地访问

用友是全球领先的企业云服务与软件提供商,在财务、人力、供应链、采购、制造、营销、研发、项目、资产、协同等领域为客户提供数字化、智能化、社会化的企业云服务产品与解决方案。 U8C是用友针对成长型、创新型企业,提供企业级ERP整体解决方案。在系统…...

Graph Neural Network(GNN)图神经网络

Graph Neural Network(GNN)图神经网络,是一种旨在对图结构数据就行操作的深度学习算法。它可以很自然地表示现实世界中的很多问题,包括社交网络,分子结构和交通网络等。GNN旨在处理此类图结构数据,并对图中的节点和边进行预测或执…...

JSTL核心库的简单使用

JSTL核心库的简单使用 7.1考试重点 7.1.1c:out输出数据 考试重点就是c的相关的 jar包下载地址:Apache Tomcat - Apache Taglibs Downloads 看会典型应用就可以<% page contentType"text/html;charsetUTF-8" language"java" %> <% taglib uri"…...

ffmpeg.dll丢失怎么办,有什么修复ffmpeg.dll的方法

如果你在运行某些音视频软件或游戏时遇到了“ffmpeg.dll丢失”的错误消息&#xff0c;这意味着你的Windows系统中缺少了ffmpeg.dll文件&#xff0c;这是一个必要的动态链接库&#xff08;DLL&#xff09;文件&#xff0c;用于支持许多音视频软件和游戏的运行。在这篇文章中&…...

【学习笔记】NOIP爆零赛9

这场考炸了&#xff0c;不过也还好&#xff0c;正好给自己警醒的作用 t1t1t1应该是想到正解了&#xff0c;就是最后边界那个地方还是没有想清楚&#xff0c;哎这种交互题卡询问次数还是挺难受的&#xff0c;并且似乎我对于这种细节并不能很好把握。然后就少了50pts50pts50pts是…...

SpringMVC的常用组件和工作流程及部分注解解析

一丶SpringMVC常用的组件 1.前端控制器DispatcherServlet 作用&#xff1a;统一处理请求和响应。除此之外还是整个流程控制的中心&#xff0c;由 DispatcherServlet 来调用其他组件&#xff0c;处理用户的请求 接收请求&#xff0c;响应结果&#xff0c;相当于转发器&#xff…...

创建Firebase项目并接入Firebase推送: Firebase Cloud Messaging (FCM)

1.FCM简介&#xff1a;Firebase Cloud Messaging (FCM) 是一种跨平台消息传递解决方案&#xff0c;可供您可靠地传递消息&#xff0c;而且还是免费的服务。支持 Android&#xff0c;IOS,Web,Flutter,Unity.消息类型可以使用 FCM 向客户端发送两种类型的消息&#xff1a;通知消息…...

MyBatis的简单使用

MyBatis是一个优秀的持久型框架用于简化JDBC开发&#xff0c;JDBC的原生写法普遍都很麻烦&#xff0c;还要写原汁原味的sql语句&#xff0c;mybatis将很多东西都放到了配置文件里面然后用少量代码简化了免除了几乎所有的JDBC代码以及设定参数和获取结果集的工作。MyBatis 可以通…...

最新的Windows docker安装方法

什么是Docker&#xff1f;关于Docker的相关概述&#xff0c;请看&#xff1a;Docker_面向架构编程的博客-CSDN博客在Windows10 or Windows11中安装docker主要就两步&#xff1a;1.安装wsl22. 安装docker一、安装WSL2安装wslwsl --install然后重启一下电脑在cmd窗口可以查看自己…...

2023软件测试工程师涨薪攻略,3年如何达到30K

1.软件测试如何实现涨薪 首先涨薪并不是从8000涨到9000这种涨薪&#xff0c;而是从8000涨到15K加到25K的涨薪。基本上三年之内就可以实现。 如果我们只是普通的有应届毕业生或者是普通本科那我们就只能从小公司开始慢慢往上走。 有些同学想去做测试&#xff0c;是希望能够日…...

【算法题】1927. 求和游戏

题目&#xff1a; Alice 和 Bob 玩一个游戏&#xff0c;两人轮流行动&#xff0c;Alice 先手 。 给你一个 偶数长度 的字符串 num &#xff0c;每一个字符为数字字符或者 ‘?’ 。每一次操作中&#xff0c;如果 num 中至少有一个 ‘?’ &#xff0c;那么玩家可以执行以下操…...

有趣的 Kotlin 0x10:操作符 ..<

操作符 …< ..< 操作符是 Kotlin 在 1.7.20 版本中引入的不包含尾部元素的左闭右开区间操作符。之前我们使用的比较多的操作符可能是 .. 和 until&#xff0c;两者均表示区间&#xff0c;前者是闭区间&#xff0c;后者则表示不包含末端元素的左闭右开区间。 OptIn(Expe…...

mysql数据库之索引使用原则

一、最左前缀法则。 1、如果索引使用了多列&#xff08;联合索引&#xff09;&#xff0c;要遵守最左前缀法则。最左前缀法则指的是查询从索引的最左列开始&#xff0c;并且不跳过索引中的列。 如果跳跃到某一列&#xff0c;索引将部分失效&#xff08;后面的字段索引失效&am…...

【Java】Spring Boot 日志文件

文章目录SpringBoot日志文件1. 日志有什么用2. 日志怎么用3. 自定义日志打印3.1 在程序中得到日志对象3.2 使用日志对象打印日志4. 日志级别4.1 日志级别有什么用&#xff1f;4.2 日志级别的分类与使用5. 日志持久化6. 更简单的日志输出--lombok6.1 添加 lombok 依赖6.2 输出日…...

RestClient

什么是RestClient RestClient 是 Elasticsearch 官方提供的 Java 低级 REST 客户端&#xff0c;它允许HTTP与Elasticsearch 集群通信&#xff0c;而无需处理 JSON 序列化/反序列化等底层细节。它是 Elasticsearch Java API 客户端的基础。 RestClient 主要特点 轻量级&#xff…...

铭豹扩展坞 USB转网口 突然无法识别解决方法

当 USB 转网口扩展坞在一台笔记本上无法识别,但在其他电脑上正常工作时,问题通常出在笔记本自身或其与扩展坞的兼容性上。以下是系统化的定位思路和排查步骤,帮助你快速找到故障原因: 背景: 一个M-pard(铭豹)扩展坞的网卡突然无法识别了,扩展出来的三个USB接口正常。…...

STM32+rt-thread判断是否联网

一、根据NETDEV_FLAG_INTERNET_UP位判断 static bool is_conncected(void) {struct netdev *dev RT_NULL;dev netdev_get_first_by_flags(NETDEV_FLAG_INTERNET_UP);if (dev RT_NULL){printf("wait netdev internet up...");return false;}else{printf("loc…...

visual studio 2022更改主题为深色

visual studio 2022更改主题为深色 点击visual studio 上方的 工具-> 选项 在选项窗口中&#xff0c;选择 环境 -> 常规 &#xff0c;将其中的颜色主题改成深色 点击确定&#xff0c;更改完成...

【Go】3、Go语言进阶与依赖管理

前言 本系列文章参考自稀土掘金上的 【字节内部课】公开课&#xff0c;做自我学习总结整理。 Go语言并发编程 Go语言原生支持并发编程&#xff0c;它的核心机制是 Goroutine 协程、Channel 通道&#xff0c;并基于CSP&#xff08;Communicating Sequential Processes&#xff0…...

Linux云原生安全:零信任架构与机密计算

Linux云原生安全&#xff1a;零信任架构与机密计算 构建坚不可摧的云原生防御体系 引言&#xff1a;云原生安全的范式革命 随着云原生技术的普及&#xff0c;安全边界正在从传统的网络边界向工作负载内部转移。Gartner预测&#xff0c;到2025年&#xff0c;零信任架构将成为超…...

零基础设计模式——行为型模式 - 责任链模式

第四部分&#xff1a;行为型模式 - 责任链模式 (Chain of Responsibility Pattern) 欢迎来到行为型模式的学习&#xff01;行为型模式关注对象之间的职责分配、算法封装和对象间的交互。我们将学习的第一个行为型模式是责任链模式。 核心思想&#xff1a;使多个对象都有机会处…...

C++ Visual Studio 2017厂商给的源码没有.sln文件 易兆微芯片下载工具加开机动画下载。

1.先用Visual Studio 2017打开Yichip YC31xx loader.vcxproj&#xff0c;再用Visual Studio 2022打开。再保侟就有.sln文件了。 易兆微芯片下载工具加开机动画下载 ExtraDownloadFile1Info.\logo.bin|0|0|10D2000|0 MFC应用兼容CMD 在BOOL CYichipYC31xxloaderDlg::OnIni…...

MySQL账号权限管理指南:安全创建账户与精细授权技巧

在MySQL数据库管理中&#xff0c;合理创建用户账号并分配精确权限是保障数据安全的核心环节。直接使用root账号进行所有操作不仅危险且难以审计操作行为。今天我们来全面解析MySQL账号创建与权限分配的专业方法。 一、为何需要创建独立账号&#xff1f; 最小权限原则&#xf…...

iview框架主题色的应用

1.下载 less要使用3.0.0以下的版本 npm install less2.7.3 npm install less-loader4.0.52./src/config/theme.js文件 module.exports {yellow: {theme-color: #FDCE04},blue: {theme-color: #547CE7} }在sass中使用theme配置的颜色主题&#xff0c;无需引入&#xff0c;直接可…...