门户网站 布局/优秀企业网站欣赏
说明:这是一个机器学习实战项目(附带数据+代码+文档+视频讲解),如需数据+代码+文档+视频讲解可以直接到文章最后获取。
1.项目背景
广义线性模型(Generalized Linear Model,简称GLM)是一种广泛应用于回归分析和分类问题的统计模型。它将线性模型与非线性变换相结合,可以适应各种类型的数据。
本项目通过GLM回归算法来构建广义线性回归模型。
2.数据获取
本次建模数据来源于网络(本项目撰写人整理而成),数据项统计如下:
编号 | 变量名称 | 描述 |
1 | x1 | |
2 | x2 | |
3 | x3 | |
4 | x4 | |
5 | x5 | |
6 | x6 | |
7 | x7 | |
8 | x8 | |
9 | x9 | |
10 | x10 | |
11 | y | 因变量 |
数据详情如下(部分展示):
3.数据预处理
3.1 用Pandas工具查看数据
使用Pandas工具的head()方法查看前五行数据:
关键代码:
3.2 数据缺失查看
使用Pandas工具的info()方法查看数据信息:
从上图可以看到,总共有11个变量,数据中无缺失值,共1000条数据。
关键代码:
3.3 数据描述性统计
通过Pandas工具的describe()方法来查看数据的平均值、标准差、最小值、分位数、最大值。
关键代码如下:
4.探索性数据分析
4.1 y变量直方图
用Matplotlib工具的hist()方法绘制直方图:
从上图可以看到,y变量主要集中在-400~400之间。
4.2 相关性分析
从上图中可以看到,数值越大相关性越强,正值是正相关、负值是负相关。
5.特征工程
5.1 建立特征数据和标签数据
关键代码如下:
5.2 数据集拆分
通过train_test_split()方法按照80%训练集、20%测试集进行划分,关键代码如下:
6.构建GLM回归模型
主要使用GLM回归算法,用于目标回归。
6.1 构建模型
编号 | 模型名称 | 参数 |
1 | GLM回归模型 | family=sm.families.Gaussian() |
6.2 模型摘要信息
7.模型评估
7.1 评估指标及结果
评估指标主要包括可解释方差值、平均绝对误差、均方误差、R方值等等。
模型名称 | 指标名称 | 指标值 |
测试集 | ||
GLM回归模型 | R方 | 1.0 |
均方误差 | 0.2637 | |
可解释方差值 | 1.0 | |
平均绝对误差 | 0.4158 |
从上表可以看出,R方为1.0,说明模型效果较好。
关键代码如下:
7.2 真实值与预测值对比图
从上图可以看出真实值和预测值波动基本一致。
8.结论与展望
综上所述,本文采用了GLM算法来构建回归模型,最终证明了我们提出的模型效果良好。此模型可用于日常产品的预测。
# 本次机器学习项目实战所需的资料,项目资源如下:# 项目说明:链接:https://pan.baidu.com/s/1w7CUykHtRRwGR5kERt3Kqw
提取码:6nx5
更多项目实战,详见机器学习项目实战合集列表:
机器学习项目实战合集列表_机器学习实战项目_胖哥真不错的博客-CSDN博客
相关文章:

Python实现广义线性回归模型(statsmodels GLM算法)项目实战
说明:这是一个机器学习实战项目(附带数据代码文档视频讲解),如需数据代码文档视频讲解可以直接到文章最后获取。 1.项目背景 广义线性模型(Generalized Linear Model,简称GLM)是一种广泛应用于回归分析和分类问题的统…...

GNSEC 2022年第8届全球下一代软件工程线上峰会-核心PPT资料下载
一、峰会简介 新一代软件工程是指利用新的理论、方法和技术,在软件开发、部署、运维等过程中,实现软件的可控、可预测、可维护的软件生产方式。它涵盖了多个领域,如软件开发、测试、部署、运维等,旨在提高软件生产效率和质量。 …...

nVisual能为数据中心解决什么问题?
nVisual通过可视化的管理方式,使数据中心管理者能够有效且高效地管理数据中心的资产、线缆、容量、变更;使数据中心管理者能够获得如下问题的答案,以便能够快速做出更好、更明智的决策: 1.资产管理 我们有什么&#x…...

Android--Jetpack--Databinding详解
不经一番寒彻骨,怎得梅花扑鼻香 一,定义 DataBinding, 又名数据绑定,是Android开发中非常重要的基础技术,它可以将UI组件和数据模型连接起来,使得在数据模型发生变化时,UI组件自动更新。是 MVVM 模式在 An…...

Node.js入门指南(完结)
目录 接口 介绍 RESTful json-server 接口测试工具 会话控制 介绍 cookie session token 上一篇文章我们介绍了MongoDB,这一篇文章是Node.js入门指南的最后一篇啦!主要介绍接口以及会话控制。 接口 介绍 接口是前后端通信的桥梁 ࿰…...

MySQL和Java通用加密解密方式
加密方式使用 AES 加密,再转成 Base64。 SQL -- 加密 update your_table set your_columnto_base64(aes_encrypt(your_column, "password"));-- 解密 select aes_decrypt(from_base64(your_column) ,"password") from your_table; 使用原生 …...

若依前端APP版使用教程
1 增加页面流程 新增Page>新增API>新增组件>新增样式>新增路径(page.json) {"path": "pages/mes/pro/feedback/index","style": {"navigationBarTitleText": "工单报工"}} <template><view class&quo…...

2023 年工程师不可错过的 AI 主要发展趋势
从对未来的好奇到关键的企业工具,人工智能的发展证明了它对工程师的价值。不久前,Gartner 预测,采用人工智能工程实践来构建和管理自适应人工智能系统的企业,在实施人工智能模型方面的表现将优于同行至少 25%,这为各组…...

记录 | 安装地平线工具链install_ai_toolchain.sh出现cython版本问题报错解决
安装地平线工具链 install_ai_toolchain.sh: cd ddk/package/host/ai_toolchain bash install_ai_toolchain.sh出现报错: Requirement already satisfied: packaging>20.0 in /root/.local/lib/python3.8/site-packages (from matplotlib>2.1.0-…...

Java8流操作
Java8流操作 1. 双层Map一层List 1. 双层Map一层List 代码片 // 开始分组Map<String, Map<Object, List<ProjectGeographyVO>>> collect4 vos.stream()// 注释了下行没用市级项目,只有区// .filter(data -> String.valueOf(data.getCode()).length() …...

vue-socket.io以及原生websocket的使用
vue3使用socket.io 1、安装 npm install vue-socket.io2、创建socket.js文件 export const registerSockets (sockets, proxy) > {sockets &&Object.keys(sockets).forEach((t) > {// console.log(t);// "subscribe" ! t &&// "un…...

谷歌推出功能最强大的大语言模型Gemini;大规模语言模型:从理论到实践
🦉 AI新闻 🚀 谷歌推出功能最强大的大语言模型Gemini 摘要:谷歌正式推出其迄今为止功能最强大、最通用的大语言模型Gemini。Gemini在许多测试中表现出了最先进的性能,在大部分基准测试中击败了OpenAI的GPT-4。谷歌发布了三种不同…...

Android studio 工程的 module 依赖关系图绘制 、 Android Module 依赖关系的可视化实现
整体步骤: 1、利用gradle脚本生成dot; 2、利用graphviz将dot可视化转为图片 利用gradle脚本生成dot 下载projectDependencyGraph.gradle脚本 下载 projectDependencyGraph.gradle ,放在项目根目录, 源码如下: t…...

Qt之QGraphicsView —— 笔记1.2:将QGraphicsView放置主窗口上,绘制简单图元(附完整源码)
效果 相关类介绍 QGraphicsView类提供了一个小部件,用于显示QGraphicsScene的内容。QGraphicsView在可滚动视口中可视化。QGraphicsView将滚动其视口,以确保该点在视图中居中。 QGraphicsScene类 提供了一个用于管理大量二维图形项的场景。请注意,QGraphicsScene没有自己的视…...

linux的权限管理
在Linux系统中,文件和目录的权限管理是通过用户、组以及其他用户对文件和目录的读(r)、写(w)和执行(x)权限来实现的。以下是有关Linux权限管理的详细解释: 文件和目录权限࿱…...

什么是 performance_schema ?
MySQL的performance_schema是运行在较低级别的用于监控MySQL Server运行过程中的资源消耗、资源等待等情况的一个功能特性,它具有以下特点。 performance_schema提供了一种在数据库运行时实时检查Server内部执行情况的方法。performance_schema数据库中的表使用per…...

软件多开助手的创新使用:在同一设备上玩转多个游戏
软件多开助手:在同一设备上玩转多个游戏的创新使用 随着科技的不断发展,手机和电脑已经成为我们生活中必不可少的工具。众多游戏爱好者也越来越追求在同一设备上同时体验多个游戏的乐趣。而软件多开助手的出现为这一需求提供了创新的解决方案。 传统上…...

[linux] 输出文本文件的最后一列并去重
使用 awk 命令来实现这个需求。下面是一个示例命令: awk -F , {print $NF} a.txt | sort -u解释一下这个命令: awk -F , {print $NF} a.txt:使用逗号作为字段分隔符(-F ,),打印每行的最后一个字段&#x…...

新能源车交直流充电解释
交流充电: 国家电网输出的电都是交流电,如下图所示,具有正弦切换规律的 而电动车的电池只能接受直流电,因此需要首先把交流电转换成直流电才能充进汽车电池,这就需要到了转换器OBC(on-board Charger&#…...

Failed to connect to gitee.com port 443: Time out 连接超时提示【Bug已完美解决-鸿蒙开发】
文章目录 项目场景:问题描述原因分析:解决方案:解决方案1解决方案2:解决方案3:此Bug解决方案总结解决方案总结**心得体会:解决连接超时问题的三种方案**项目场景: 导入Sample时遇到导入失败的情况,并提示“Failed to connect to gitee.com port 443: Time out”连接超…...

【开源】基于Vue+SpringBoot的智慧家政系统
项目编号: S 063 ,文末获取源码。 \color{red}{项目编号:S063,文末获取源码。} 项目编号:S063,文末获取源码。 目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块三、系统展示四、核心代码4.1 查询家政服…...

javaee实验:文件上传及拦截器的使用
目录 文件上传ModelAttribute注解实验目的实验内容实验过程项目结构编写代码结果展示 文件上传 Spring MVC 提供 MultipartFile 接口作为参数来处理文件上传。 MultipartFile 提供以下方法来获取上传的文件信息: getOriginalFilename 获取上传的文件名字&#x…...

二分查找19(Leetcode540有序数组中的单一元素)-1
代码: 没用二分查找版: class Solution {public int singleNonDuplicate(int[] nums) {if(nums.length1){return nums[0];}for(int i1;i<nums.length-1;i){if(nums[i-1]nums[i]||nums[i]nums[i1]){continue;}else{return nums[i];}}if(nums[0]nums[…...

字节开源的netPoll底层LinkBuffer设计与实现
字节开源的netPoll底层LinkBuffer设计与实现 为什么需要LinkBuffer介绍设计思路数据结构LinkBufferNodeAPI LinkBuffer读 API写 APIbook / bookAck api 小结 本文基于字节开源的NetPoll版本进行讲解,对应官方文档链接为: Netpoll对应官方文档链接 netPoll底层有一个…...

《点云进阶》专栏文章目录
目录 一、PCL进阶篇* 二、Open3D进阶篇 一、PCL进阶篇 * PCL 最小二乘拟合二维直线PCL 最小二乘拟合空间直线PCL 计算点云的倒角距离(Chamfer Distance)PCL 点云配准精度评价——点到面的均方根误差PCL 可视化八叉树PCL 计算Hausdorff距离PCL 从变换矩…...

二分查找算法-查找最接近的元素Python实现(题目来源dotcpp: 2926)
题目描述 在一个非降序列中,查找与给定值最接近的元素。 输入格式 第一行包含一个整数n,为非降序列长度。1 < n < 100000。 第二行包含n个整数,为非降序列各元素。所有元素的大小均在0-1,000,000,000之间。 第三行包含一个整数m&#x…...

debian11,debian 如何删除虚拟内存,交换分区
1.以管理员身份登录系统 2.输入以下命令以删除虚拟内存,该命令将关闭当前正在使用的虚拟内存。 sudo swapoff -a 3.输入以下命令以永久删除虚拟内存(硬盘内存文件): sudo rm /swapfile 4.重启系统 总结:以上步骤将删除 Debian 11 中的虚拟内存。请注意…...

智能优化算法应用:基于人工大猩猩部队算法无线传感器网络(WSN)覆盖优化 - 附代码
智能优化算法应用:基于人工大猩猩部队算法无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用:基于人工大猩猩部队算法无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.人工大猩猩部队算法4.实验参数设…...

鼎捷受邀出席“中国制造业产品创新数字化国际峰会”,共话工业软件创新发展
11月30日, 由e-works数字化企业网、四川省智能制造创新中心、重庆制信信息技术服务有限公司主办的第十九届中国制造业产品创新数字化国际峰会在四川成都盛大开幕。 作为制造业研发信息化领域规模、影响力兼具的专业论坛,本届峰会以“构建基于数字底座的…...

大话数据结构-查找-多路查找树
注:本文同步发布于稀土掘金。 7 多路查找树 多路查找树(multi-way search tree),其每个结点的孩子可以多于两个,且每一个结点处可以存储多个元素。由于它是查找树,所有元素之间存在某种特定的排序关系。 …...