当前位置: 首页 > news >正文

R语言进行正态分布检验

查了很多资料,还是比较模糊

Kolmogorov-Smirnov检验(K-S检验)广泛用于正态性检验和其他分布的拟合检验。适用于中等到大样本。
Lilliefors检验是K-S检验的一种变体,专门为小样本设计。其通过使用更准确的临界值来提高对小样本的适应性。
Shapiro-Wilk(S-W)检验通常在小样本下表现较好,而在大样本下可能对正态性的敏感性降低。在小样本情况下通常比K-S检验更准确。对于大样本,由于S-W检验可能会过于严格,导致拒绝正态性的可能性较大,这种情况下,应该使用K-S检验。

SPSS 5000及以下用Lilliefors检验、S-W检验;5000以上仅用Lilliefors检验
样本量>30时,倾向于看K-S检验结果;样本量≤30时,倾向于看Lilliefors检验、S-W检验结果

K-S检验

ks_result <- ks.test(sample_data, "pnorm")ks_result <- ks.test(sample_data, "pnorm", mean = mean(sample_data), sd = sd(sample_data))

S-W检验

shapiro_result <- shapiro.test(sample_data)

lillie修正的K-S检验

需要先安装
install.packages("nortest")
library(nortest)
lillie_result <- lillie.test(sample_data)

读取excel数据
library(readxl)
excel_file <- “数据分析测试数据.xlsx”
first_column <- data[[0]]

相关文章:

R语言进行正态分布检验

查了很多资料&#xff0c;还是比较模糊 Kolmogorov-Smirnov检验&#xff08;K-S检验&#xff09;广泛用于正态性检验和其他分布的拟合检验。适用于中等到大样本。 Lilliefors检验是K-S检验的一种变体&#xff0c;专门为小样本设计。其通过使用更准确的临界值来提高对小样本的适…...

什么是SPA(Single Page Application)?它的优点和缺点是什么?

聚沙成塔每天进步一点点 ⭐ 专栏简介 前端入门之旅&#xff1a;探索Web开发的奇妙世界 欢迎来到前端入门之旅&#xff01;感兴趣的可以订阅本专栏哦&#xff01;这个专栏是为那些对Web开发感兴趣、刚刚踏入前端领域的朋友们量身打造的。无论你是完全的新手还是有一些基础的开发…...

由于找不到xinput1_3.dll,无法继续执行代码的多种解决方法指南,xinput1_3.dll文件修复

当玩家或用户在启动某些游戏和应用程序时&#xff0c;可能会遭遇到一个系统错误提示&#xff1a;“由于找不到xinput1_3.dll,无法继续执行代码l”。这种情况通常指出系统中DirectX组件存在问题。以下我们将介绍几种常用的解决方法&#xff0c;并提供详细的操作步骤。 一.找不到…...

Vue---Echarts

项目需要用echarts来做数据展示&#xff0c;现记录vue3引入并使用echarts的过程。 1. 使用步骤 安装 ECharts&#xff1a;使用 npm 或 yarn 等包管理工具安装 ECharts。 npm install echarts 在 Vue 组件中引入 ECharts&#xff1a;在需要使用图表的 Vue 组件中&#xff0c;引入…...

uni-app实现返回刷新上一页

方案一 通过监听器实现 page1 uni.$on("refresh", function(data) {if(data.page "page2") {this.reload()} })page2 methods: {handleBack() {uni.$emit("refresh", {page: "page2"})uni.navigateBack()} }方案二 通过页面实例实…...

centos服务器安装docker和Rabbitmq

centos服务器 一 centos安装docker1 安装docker所需要的依赖包2配置yum源3查看仓库中所有的docker版本4安装docker5 设置docker为开机自启6验证docker是否安装成功 二 使用docker安装RabbitMQ拉取RabbitMQ镜像创建并运行容器 一 centos安装docker 1 安装docker所需要的依赖包 …...

【Redis】Redis高级特性和应用(慢查询、Pipeline、事务、Lua)

目录 Redis的慢查询 慢查询配置 慢查询操作命令 慢查询建议 Pipeline 事务 Redis的事务原理 Redis的watch命令 Pipeline和事务的区别 Lua Lua入门 安装Lua Lua基本语法 注释 标示符 关键词 全局变量 Lua中的数据类型 Lua 中的函数 Lua 变量 Lua中的控制语句…...

【pytorch】深度学习入门一:pytorch的安装与配置(Windows版)

请支持原创&#xff0c;认准DannisTang&#xff08;tangweixuan1995foxmail.com&#xff09; 文章目录 第〇章 阅读前提示第一章 准备工作第一节 Python下载第二节 Python安装第三节 Python配置第四节 Pycharm下载第五节 Pycharm安装第六节 CUDA的安装 第二章 Anaconda安装与配…...

安装postgresql驱动及python使用pyodbc指定postgresql驱动调用postgresql

注&#xff1a;Python解释器版本(32位/64位)和postgresql驱动版本(32位/64位)需一致。 一、安装postgresql驱动 https://www.postgresql.org/ftp/odbc/versions/msi/ &#xff08;1&#xff09;32位&#xff1a; &#xff08;2&#xff09;64位&#xff1a; 双击安装。全程默…...

【OpenCV】计算机视觉图像处理基础知识

目录 前言 推荐 1、OpenCV礼帽操作和黑帽操作 2、Sobel算子理论基础及实际操作 3、Scharr算子简介及相关操作 4、Sobel算子和Scharr算子的比较 5、laplacian算子简介及相关操作 6、Canny边缘检测的原理 6.1 去噪 6.2 梯度运算 6.3 非极大值抑制 6.4 滞后阈值 7、Ca…...

Course1-Week3-分类问题

Course1-Week3-分类问题 文章目录 Course1-Week3-分类问题1. 逻辑回归1.1 线性回归不适用于分类问题1.2 逻辑回归模型1.3 决策边界 2. 逻辑回归的代价函数3. 实现梯度下降4. 过拟合与正则化4.1 线性回归和逻辑回归中的过拟合4.2 解决过拟合的三种方法4.3 正则化4.4 用于线性回归…...

Dockerfile 指令的最佳实践

这些建议旨在帮助您创建一个高效且可维护的Dockerfile。 一、FROM 尽可能使用当前的官方镜像作为镜像的基础。Docker推荐Alpine镜像&#xff0c;因为它受到严格控制&#xff0c;体积小&#xff08;目前不到6 MB&#xff09;&#xff0c;同时仍然是一个完整的Linux发行版。 FR…...

Drools 入门:折扣案例

1. 安装 在idea软件中安装Drools 插件&#xff0c;我这里是直接搜索Drools就可以搜到 2. 实现入门案例 2.1 配置pom.xml文件 <?xml version"1.0" encoding"UTF-8"?> <project xmlns"http://maven.apache.org/POM/4.0.0"xmlns:xsi&q…...

微信小程序中生命周期钩子函数

微信小程序 App 的生命周期钩子函数有以下 7 个&#xff1a; onLaunch(options)&#xff1a;当小程序初始化完成时&#xff0c;会触发 onLaunch&#xff08;全局只触发一次&#xff09;。onShow(options)&#xff1a;当小程序启动或从后台进入前台显示时&#xff0c;会触发 on…...

“无忧文件安全!上海迅软DSE文件加密软件助您轻松管控分公司数据!

许多大型企业集团由于旗下有着分布在不同城市的分支机构&#xff0c;因此在规划数据安全解决方案时&#xff0c;不适合采用市面上常见的集中式部署方式来管控各分部服务器&#xff0c;而迅软DSE文件加密软件支持采用分布式部署的方式来解决这一问题。 企业用户只需在总部内部署…...

详解线段树

前段时间写过一篇关于树状数组的博客树状数组&#xff0c;今天我们要介绍的是线段树&#xff0c;线段树比树状数组中的应用场景更加的广泛。这些问题也是在leetcode 11月的每日一题频繁遇到的问题&#xff0c;实际上线段树就和红黑树 、堆一样是一类模板&#xff0c;但是标准库…...

C语言——指针的运算

1、指针 - 整数 #include<stdio.h> #define N_VALUES 5 int main() {flout values[N_VALUES];flout *vp;for(vp&values[0];vp<&values[N_VALUES]&#xff1b;) //指针的关系运算{*vp0; //指针整数} } 2、指针 - 指针 #include<stdio.h> int main() …...

Apache Hive(部署+SQL+FineBI构建展示)

Hive架构 Hive部署 VMware虚拟机部署 一、在node1节点安装mysql数据库 二、配置Hadoop 三、下载 解压Hive 四、提供mysql Driver驱动 五、配置Hive 六、初始化元数据库 七、启动Hive(Hadoop用户) chown -R hadoop:hadoop apache-hive-3.1.3-bin hive 阿里云部…...

python入门级简易教程

Python是一种高级编程语言&#xff0c;由Guido van Rossum于1991年创建。它是一种通用的、解释型的、高级的、动态的、面向对象的编程语言。 Python的编程哲学是简洁明了&#xff0c;强调代码的可读性和简洁性&#xff0c;使开发人员能够快速开发出正确的代码。Python被广泛用…...

模拟一个集合 里面是设备号和每日的日期

问题&#xff1a; 需要模拟一个集合 里面是设备号和每日的日期 代码如下&#xff1a; static void Main(string[] args){string equipmentCodePar "";DateTime time DateTime.Now; // 获取当前时间DateTime startDate time.AddDays(1 - time.Day);//获取当前月第一…...

C++_核心编程_多态案例二-制作饮品

#include <iostream> #include <string> using namespace std;/*制作饮品的大致流程为&#xff1a;煮水 - 冲泡 - 倒入杯中 - 加入辅料 利用多态技术实现本案例&#xff0c;提供抽象制作饮品基类&#xff0c;提供子类制作咖啡和茶叶*//*基类*/ class AbstractDr…...

(二)TensorRT-LLM | 模型导出(v0.20.0rc3)

0. 概述 上一节 对安装和使用有个基本介绍。根据这个 issue 的描述&#xff0c;后续 TensorRT-LLM 团队可能更专注于更新和维护 pytorch backend。但 tensorrt backend 作为先前一直开发的工作&#xff0c;其中包含了大量可以学习的地方。本文主要看看它导出模型的部分&#x…...

基于当前项目通过npm包形式暴露公共组件

1.package.sjon文件配置 其中xh-flowable就是暴露出去的npm包名 2.创建tpyes文件夹&#xff0c;并新增内容 3.创建package文件夹...

Cinnamon修改面板小工具图标

Cinnamon开始菜单-CSDN博客 设置模块都是做好的&#xff0c;比GNOME简单得多&#xff01; 在 applet.js 里增加 const Settings imports.ui.settings;this.settings new Settings.AppletSettings(this, HTYMenusonichy, instance_id); this.settings.bind(menu-icon, menu…...

WordPress插件:AI多语言写作与智能配图、免费AI模型、SEO文章生成

厌倦手动写WordPress文章&#xff1f;AI自动生成&#xff0c;效率提升10倍&#xff01; 支持多语言、自动配图、定时发布&#xff0c;让内容创作更轻松&#xff01; AI内容生成 → 不想每天写文章&#xff1f;AI一键生成高质量内容&#xff01;多语言支持 → 跨境电商必备&am…...

JVM暂停(Stop-The-World,STW)的原因分类及对应排查方案

JVM暂停(Stop-The-World,STW)的完整原因分类及对应排查方案,结合JVM运行机制和常见故障场景整理而成: 一、GC相关暂停​​ 1. ​​安全点(Safepoint)阻塞​​ ​​现象​​:JVM暂停但无GC日志,日志显示No GCs detected。​​原因​​:JVM等待所有线程进入安全点(如…...

分布式增量爬虫实现方案

之前我们在讨论的是分布式爬虫如何实现增量爬取。增量爬虫的目标是只爬取新产生或发生变化的页面&#xff0c;避免重复抓取&#xff0c;以节省资源和时间。 在分布式环境下&#xff0c;增量爬虫的实现需要考虑多个爬虫节点之间的协调和去重。 另一种思路&#xff1a;将增量判…...

均衡后的SNRSINR

本文主要摘自参考文献中的前两篇&#xff0c;相关文献中经常会出现MIMO检测后的SINR不过一直没有找到相关数学推到过程&#xff0c;其中文献[1]中给出了相关原理在此仅做记录。 1. 系统模型 复信道模型 n t n_t nt​ 根发送天线&#xff0c; n r n_r nr​ 根接收天线的 MIMO 系…...

使用 SymPy 进行向量和矩阵的高级操作

在科学计算和工程领域&#xff0c;向量和矩阵操作是解决问题的核心技能之一。Python 的 SymPy 库提供了强大的符号计算功能&#xff0c;能够高效地处理向量和矩阵的各种操作。本文将深入探讨如何使用 SymPy 进行向量和矩阵的创建、合并以及维度拓展等操作&#xff0c;并通过具体…...

Reasoning over Uncertain Text by Generative Large Language Models

https://ojs.aaai.org/index.php/AAAI/article/view/34674/36829https://ojs.aaai.org/index.php/AAAI/article/view/34674/36829 1. 概述 文本中的不确定性在许多语境中传达,从日常对话到特定领域的文档(例如医学文档)(Heritage 2013;Landmark、Gulbrandsen 和 Svenevei…...