当前位置: 首页 > news >正文

【Docker】Swarm的ingress网络

Docker Swarm Ingress网络是Docker集群中的一种网络模式,它允许在Swarm集群中运行的服务通过一个公共的入口点进行访问。Ingress网络将外部流量路由到Swarm集群中的适当服务,并提供负载均衡和服务发现功能。

在Docker Swarm中,Ingress网络使用了一种称为"Routing Mesh"的技术。Routing Mesh通过在Swarm集群的每个节点上创建一组代理来实现负载均衡和服务发现。这些代理将外部流量路由到适当的服务,并自动处理服务的扩展和缩减。

ingress routing mesh是docker swarm网络里最复杂的一部分内容,包括多方面的内容:

  • iptables的Destination NAT流量转发
  • Linux bridge, network namespace
  • 使用IPVS技术做负载均衡
  • 包括容器间的通信(overlay)和入方向流量的端口转发

主机规划:

  • node1:172.19.177.14,角色为Leader
  • node2:172.19.188.123,角色为Worker
$ sudo docker node ls
ID                            HOSTNAME   STATUS    AVAILABILITY   MANAGER STATUS   ENGINE VERSION
u36el9nkyamqgihcwj5yk4cwe *   node1      Ready     Active         Leader           24.0.2
0e8q2v9glvt56jbk9mpbkhc9l     node2      Ready     Active                          24.0.2

service创建

创建一个service,名为web, 通过-p把端口映射出来:

$ sudo docker service create --name web -p 8080:80 --replicas 2 containous/whoami
j2bzt3mi7yedm4um6g5o96ndd
overall progress: 2 out of 2 tasks
1/2: running   [==================================================>]
2/2: running   [==================================================>]

我们使用的镜像containous/whoami是一个简单的web服务,能返回服务器的hostname,和基本的网络信息,比如IP地址。

查询service:

$ sudo docker service ps web
ID             NAME      IMAGE                      NODE      DESIRED STATE   CURRENT STATE            ERROR     PORTS
q9s4ggh2oaq2   web.1     containous/whoami:latest   node2     Running         Running 14 seconds ago
1vomhe5jo3hq   web.2     containous/whoami:latest   node1     Running         Running 14 seconds ago

service的访问

8080这个端口到底映射到哪里了?尝试访问两个swarm节点的IP加端口8080:

$ curl 172.19.177.14:8080
Hostname: 3a0d0ab2c13b
IP: 127.0.0.1
IP: 10.0.0.5
IP: 172.20.0.3
RemoteAddr: 10.0.0.2:51986
GET / HTTP/1.1
Host: 172.19.177.14:8080
User-Agent: curl/7.58.0
Accept: */*$ curl 172.19.188.123:8080
Hostname: 1356383a5cdc
IP: 127.0.0.1
IP: 10.0.0.6
IP: 172.18.0.3
RemoteAddr: 10.0.0.3:58008
GET / HTTP/1.1
Host: 172.19.188.123:8080
User-Agent: curl/7.58.0
Accept: */*

可以看到两个节点的8080端口都可以访问,并且回应的容器是不同的(hostname),也就是有负载均衡的效果。

ingress数据包的走向

以node1节点为例,来看看数据到底是如何达到service中的container:

$ sudo iptables -nvL -t nat
Chain PREROUTING (policy ACCEPT 2583 packets, 256K bytes)pkts bytes target     prot opt in     out     source               destination7447  447K DOCKER-INGRESS  all  --  *      *       0.0.0.0/0            0.0.0.0/0            ADDRTYPE match dst-type LOCAL
17212 1036K DOCKER     all  --  *      *       0.0.0.0/0            0.0.0.0/0            ADDRTYPE match dst-type LOCALChain INPUT (policy ACCEPT 1830 packets, 114K bytes)pkts bytes target     prot opt in     out     source               destinationChain OUTPUT (policy ACCEPT 1816 packets, 110K bytes)pkts bytes target     prot opt in     out     source               destination147 10427 DOCKER-INGRESS  all  --  *      *       0.0.0.0/0            0.0.0.0/0            ADDRTYPE match dst-type LOCAL0     0 DOCKER     all  --  *      *       0.0.0.0/0           !127.0.0.0/8          ADDRTYPE match dst-type LOCALChain POSTROUTING (policy ACCEPT 1816 packets, 110K bytes)pkts bytes target     prot opt in     out     source               destination7   420 MASQUERADE  all  --  *      docker_gwbridge  0.0.0.0/0            0.0.0.0/0            ADDRTYPE match src-type LOCAL0     0 MASQUERADE  all  --  *      !docker0  172.17.0.0/16        0.0.0.0/08   672 MASQUERADE  all  --  *      !docker_gwbridge  172.18.0.0/16        0.0.0.0/0Chain DOCKER (2 references)pkts bytes target     prot opt in     out     source               destination0     0 RETURN     all  --  docker0 *       0.0.0.0/0            0.0.0.0/00     0 RETURN     all  --  docker_gwbridge *       0.0.0.0/0            0.0.0.0/0Chain DOCKER-INGRESS (2 references)pkts bytes target     prot opt in     out     source               destination2   120 DNAT       tcp  --  *      *       0.0.0.0/0            0.0.0.0/0            tcp dpt:8080 to:172.18.0.2:80807587  457K RETURN     all  --  *      *       0.0.0.0/0            0.0.0.0/0

外部访问的流量首先进入nat表的PREROUTING链,PREROUTING链的第一条规则会将所有的流量转发至DOCKER-INGRESS自定义链,在DOCKER-INGRESS链中可以看到一条DNAT的规则,所有访问本地8080端口的流量都被转发到 172.18.0.2:8080

那么这个172.18.0.2是谁的ip呢?

查看docker_gwbridge网桥详情

首先172.18.0.0/16这个网段是网桥docker_gwbridge的,所以这个地址肯定是连在了docker_gwbridge上。

$ sudo docker network inspect docker_gwbridge
[{"Name": "docker_gwbridge","Id": "06c86fd2ac810906cc53669d4a1f01c0036fb3b7a35863f23a898a7a7faa5dfd","Created": "2023-11-17T09:07:00.959710462Z","Scope": "local","Driver": "bridge","EnableIPv6": false,"IPAM": {"Driver": "default","Options": null,"Config": [{"Subnet": "172.18.0.0/16","Gateway": "172.18.0.1"}]},"Internal": false,"Attachable": false,"Ingress": false,"ConfigFrom": {"Network": ""},"ConfigOnly": false,"Containers": {"1356383a5cdcd023acb9fc5090d983be4717161ef6e8416b38070f84e2d38b72": {"Name": "gateway_7e04894d7701","EndpointID": "9cda42b1d59f9643905169f92fd2d24c62c8d451096c4c002c8c5c0733d3c50e","MacAddress": "02:42:ac:12:00:03","IPv4Address": "172.18.0.3/16","IPv6Address": ""},"ingress-sbox": {"Name": "gateway_ingress-sbox","EndpointID": "5011de467d80ba0f1bc9b97b6625f2dc6104cc4913495fe84af9e27661df0730","MacAddress": "02:42:ac:12:00:02","IPv4Address": "172.18.0.2/16","IPv6Address": ""}},"Options": {"com.docker.network.bridge.enable_icc": "false","com.docker.network.bridge.enable_ip_masquerade": "true","com.docker.network.bridge.name": "docker_gwbridge"},"Labels": {}}
]

可以看到除了容器web.2(gateway_7e04894d7701)连接到docker_gwbridge这个网桥上,还有一个叫ingress-sbox的容器也连接了docker_gwbridge,它的IP地址是172.18.0.2/16

ingress-sbox网络命名空间

这个ingress-sbox其实并不是一个容器,而是一个网络命名空间(network namespace), 我们可以通过下面的方式进入到这个命名空间:

$ sudo ls /run/docker/netns/
1-m4np8jn3j5  7e04894d7701  ingress_sbox$ sudo nsenter --net="/run/docker/netns/ingress_sbox" ip addr
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default qlen 1000link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00inet 127.0.0.1/8 scope host lovalid_lft forever preferred_lft forever
119: eth0@if120: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1450 qdisc noqueue state UP group defaultlink/ether 02:42:0a:00:00:02 brd ff:ff:ff:ff:ff:ff link-netnsid 0inet 10.0.0.2/24 brd 10.0.0.255 scope global eth0valid_lft forever preferred_lft foreverinet 10.0.0.4/32 scope global eth0valid_lft forever preferred_lft forever
121: eth1@if122: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP group defaultlink/ether 02:42:ac:12:00:02 brd ff:ff:ff:ff:ff:ff link-netnsid 1inet 172.18.0.2/16 brd 172.18.255.255 scope global eth1valid_lft forever preferred_lft forever

通过查看IP地址,发现这个命名空间连接了两个网络,一个eth1是连接了docker_gwbridge,另外一个eth0连接了ingress这个网络。

ingress-sbox对流量的处理

前面我们已经看到访问宿主机的8080端口,宿主机会将流量转发到ingress-sbox(172.18.0.2)的8080端口,接下来看下ingress-sbox对流量是怎么处理的?

$ sudo nsenter --net="/run/docker/netns/ingress_sbox" iptables -nvL -t mangle
Chain PREROUTING (policy ACCEPT 20 packets, 1820 bytes)pkts bytes target     prot opt in     out     source               destination12   804 MARK       tcp  --  *      *       0.0.0.0/0            0.0.0.0/0            tcp dpt:8080 MARK set 0x10fChain INPUT (policy ACCEPT 12 packets, 804 bytes)pkts bytes target     prot opt in     out     source               destination0     0 MARK       all  --  *      *       0.0.0.0/0            10.0.0.4             MARK set 0x10fChain FORWARD (policy ACCEPT 8 packets, 1016 bytes)pkts bytes target     prot opt in     out     source               destinationChain OUTPUT (policy ACCEPT 12 packets, 804 bytes)pkts bytes target     prot opt in     out     source               destinationChain POSTROUTING (policy ACCEPT 20 packets, 1820 bytes)pkts bytes target     prot opt in     out     source               destination

MARK是iptables的一个目标,用于给数据包打上指定mark,我们可以看到ingress-sbox对8080端口的流量打上MARK为0x10f,对应的十进制为271。

由于ingress_sbox会通过ipvs负载转发数据包到某个容器的虚拟ip上(即Routing Mesh路由转发),故需要通过ipvsadm指令查看对应的路由结果。

此时,我们查看ipvs负载路由,通过命令ipvsadm可以发现标记位271会将数据包轮询(rr)发送到10.0.0.5和10.0.0.6这两个IP地址。

$ sudo nsenter --net="/run/docker/netns/ingress_sbox" ipvsadm
IP Virtual Server version 1.2.1 (size=4096)
Prot LocalAddress:Port Scheduler Flags-> RemoteAddress:Port           Forward Weight ActiveConn InActConn
FWM  271 rr-> 10.0.0.5:0                   Masq    1      0          0-> 10.0.0.6:0                   Masq    1      0          0

接下来就是10.0.0.2和10.0.0.5或10.0.0.6这两个容器之间的通讯了,参考上节的overlay网络通讯。

相关文章:

【Docker】Swarm的ingress网络

Docker Swarm Ingress网络是Docker集群中的一种网络模式&#xff0c;它允许在Swarm集群中运行的服务通过一个公共的入口点进行访问。Ingress网络将外部流量路由到Swarm集群中的适当服务&#xff0c;并提供负载均衡和服务发现功能。 在Docker Swarm中&#xff0c;Ingress网络使…...

gcc安全特性之FORTIFY_SOURCE

GCC 4.0引入了FORTIFY_SOURCE特性&#xff0c;旨在加强程序的安全性&#xff0c;特别是对于字符串和内存操作函数的使用。下面是对FORTIFY_SOURCE机制的深入分析&#xff1a; 1. 功能 FORTIFY_SOURCE旨在检测和防止缓冲区溢出&#xff0c;格式化字符串漏洞以及其他与内存操作…...

【JUC】二十、volatile变量的特点与使用场景

文章目录 1、volatile可见性案例2、线程工作内存与主内存之间的原子操作3、volatile变量不具有原子性案例4、无原子性的原因分析&#xff1a;i5、volatile变量小总结6、重排序7、volatile变量禁重排的案例8、日常使用场景9、总结 volatile变量的特点&#xff1a; 可见性禁重排无…...

软件工程期末复习(2)

学习资料 设计模式与软件体系结构【期末全整理答案】_软件设计模式与体系结构期末考试题_鸽子不二的博客-CSDN博客 软件设计与体系结构(第二版)部分习题_软件设计与体系结构第二版课后答案-CSDN博客 软件体系结构试题库试题和答案 - 豆丁网Docin 软件设计与体系结构复习 - CN…...

[vue3] 使用 vite 创建vue3项目的详细流程

一、vite介绍 Vite&#xff08;法语意为 “快速的”&#xff0c;发音 /vit/&#xff0c;发音同 “veet”) 是一种新型前端构建工具&#xff0c;能够显著提升前端开发体验&#xff08;热更新、打包构建速度更快&#xff09;。 二、使用vite构建项目 【学习指南】学习新技能最…...

#HarmonyOS:软件安装window和mac预览Hello World

Window软件地址 https://developer.harmonyos.com/cn/develop/deveco-studio#download 安装的建议 这个界面这样选&#xff0c;其他界面全部按照默认路径往下走&#xff01;&#xff01;&#xff01; 等待安装… 安装环境错误处理 一般就是本地node配置异常导致&#xff…...

nginx 一键切换停机维护页面 —— 筑梦之路

背景说明 进行停机维护或者系统升级等操作&#xff0c;会影响到用户使用&#xff0c;如果停机维护期间用户未看到停机维护的通知&#xff0c;仍去访问系统&#xff0c;会提示默认不太友好的访问错误界面 &#xff0c;这时如果在维护的时候直接展示停机公告的具体信息&#xff0…...

Python作业答疑

1. 旋转字符串 1.1 问题描述 给定一个字符串&#xff08;以字符数组的形式&#xff09;和一个偏移量&#xff0c;根据偏移量原地从左向右旋转字符串。 1.2 问题示例 输入str"abcdefg"&#xff0c;offset3&#xff0c;输出"efgabcd"。 输入str"ab…...

计算机网络实用工具之Hydra

简介 Hydra 是一个并行登录破解程序&#xff0c;支持多种协议进行攻击。它非常快速且灵活&#xff0c;并且很容易添加新模块。 该工具使研究人员和安全顾问能够展示远程未经授权访问系统是多么容易。 目前该工具支持以下协议&#xff1a; Asterisk, AFP, Cisco AAA, Cisco au…...

AUTOSAR 入门

前言 AUTOSAR是什么Vector DaVinci 工具功能快捷键合理的创建标题&#xff0c;有助于目录的生成如何改变文本的样式插入链接与图片如何插入一段漂亮的代码片生成一个适合你的列表创建一个表格设定内容居中、居左、居右SmartyPants 创建一个自定义列表如何创建一个注脚注释也是必…...

新版IDEA中,module模块无法被识别,类全部变成咖啡杯无法被识

新版IDEA中&#xff0c;module模块无法被识别&#xff0c;类全部变成咖啡杯无法被识 如下图&#xff1a; 解决方法&#xff1a;java的Directory文件没有被设置为根目录&#xff0c;解决方法如下&#xff1a; 这是方法之一&#xff0c;还有很多的原因 可能的原因&#xff1a; …...

vue.js el-table 动态单元格列合并

一、业务需求&#xff1a; 一个展示列表&#xff0c;表格中有一部分列是根据后端接口动态展示&#xff0c;对于不同类型的数据展示效果不一样。如果接口返回数据是’类型1‘的&#xff0c;则正常展示&#xff0c;如果是’类型2‘的数据&#xff0c;则合并当前数据的动态表格。…...

word模板导出word文件

前期准备工作word模板 右键字段如果无编辑域 ctrlF9 一下&#xff0c;然后再右键 wps 直接 ctrlF9 会变成编辑域 pom.xml所需依赖 <dependencies> <!--word 依赖--> <dependency><groupId>fr.opensagres.xdocreport</groupId><artifactId…...

debianubuntu的nvidia驱动升级

背景 给出的机器的驱动版本不符合要求&#xff0c;使用自定义的驱动版本。 前置 如果使用nvidia官方的.run安装的驱动包&#xff0c;可以使用系统自带的nvidia-uninstall命令卸载比较方便&#xff0c;不建议使用apt pruge nvidia-*命令删除。会带来其他的问题。 卸载完成之…...

【开源视频联动物联网平台】视频接入网关的用法

视频接入网关是一种功能强大的视频网关设备&#xff0c;能够解决各种视频接入、视频输出、视频转码和视频融合等问题。它可以在应急指挥、智慧融合等项目中发挥重要作用&#xff0c;与各种系统进行对接&#xff0c;解决视频能力跨系统集成的难题。 很多视频接入网关在接入协议…...

【bug排查解决】现象级延迟8-10s

业务背景 最近公司在做物联网相关的项目&#xff0c;调试过程中发现好玩的bug。 首先一个数据采集场景&#xff0c;plc采集数据全链路&#xff1a; kepServer&#xff08;kepserver IOT gateway&#xff09; -> emqx &#xff08;查看日志&#xff09;-> iot服务 -> 业…...

【人生感悟】不能对一个人太好是有心理学原理的

1、不能对一个人太好是有心理学原理的&#xff0c;当你长期友善对待一个人时&#xff0c;如果这个人认知程度不是很高&#xff0c;层次稍微的偏低&#xff0c;那他可能直接把你的友善理解为理所应当&#xff0c;甚至是你在讨好他&#xff0c;还会把你们之间的关系理解成他是高于…...

动态规划学习——最长回文子序列,让字符串变成回文串的最小插入次数

一&#xff0c;最长回文串 1.题目 给你一个字符串 s &#xff0c;找出其中最长的回文子序列&#xff0c;并返回该序列的长度。 子序列定义为&#xff1a;不改变剩余字符顺序的情况下&#xff0c;删除某些字符或者不删除任何字符形成的一个序列。 示例 1&#xff1a; 输入&…...

CSS新手入门笔记整理:CSS列表样式

列表项符号&#xff1a;list-style-type 在HTML中&#xff0c;对于有序列表和无序列表的列表项符号&#xff0c;都是使用type属性来定义的。 语法 list-style-type:取值; list-style-type属性是针对ol或者ul元素的&#xff0c;而不是li元素。 有序列表属性 属性值 说明 …...

12月07日,每日信息差

以下是2023年12月07日的11条信息差 第一、社交媒体公司X计划在日本成立应用开发团队 第二、造车进程加快&#xff0c;小米汽车在多地招聘零售门店主管&#xff0c;零售门店主管工作地点涉及武汉、重庆、长沙、郑州、佛山、东莞、厦门等城市 第三、我国西南地区首座百万千瓦级…...

Java 8 Stream API 入门到实践详解

一、告别 for 循环&#xff01; 传统痛点&#xff1a; Java 8 之前&#xff0c;集合操作离不开冗长的 for 循环和匿名类。例如&#xff0c;过滤列表中的偶数&#xff1a; List<Integer> list Arrays.asList(1, 2, 3, 4, 5); List<Integer> evens new ArrayList…...

【SQL学习笔记1】增删改查+多表连接全解析(内附SQL免费在线练习工具)

可以使用Sqliteviz这个网站免费编写sql语句&#xff0c;它能够让用户直接在浏览器内练习SQL的语法&#xff0c;不需要安装任何软件。 链接如下&#xff1a; sqliteviz 注意&#xff1a; 在转写SQL语法时&#xff0c;关键字之间有一个特定的顺序&#xff0c;这个顺序会影响到…...

Python爬虫(二):爬虫完整流程

爬虫完整流程详解&#xff08;7大核心步骤实战技巧&#xff09; 一、爬虫完整工作流程 以下是爬虫开发的完整流程&#xff0c;我将结合具体技术点和实战经验展开说明&#xff1a; 1. 目标分析与前期准备 网站技术分析&#xff1a; 使用浏览器开发者工具&#xff08;F12&…...

浅谈不同二分算法的查找情况

二分算法原理比较简单&#xff0c;但是实际的算法模板却有很多&#xff0c;这一切都源于二分查找问题中的复杂情况和二分算法的边界处理&#xff0c;以下是博主对一些二分算法查找的情况分析。 需要说明的是&#xff0c;以下二分算法都是基于有序序列为升序有序的情况&#xf…...

JVM暂停(Stop-The-World,STW)的原因分类及对应排查方案

JVM暂停(Stop-The-World,STW)的完整原因分类及对应排查方案,结合JVM运行机制和常见故障场景整理而成: 一、GC相关暂停​​ 1. ​​安全点(Safepoint)阻塞​​ ​​现象​​:JVM暂停但无GC日志,日志显示No GCs detected。​​原因​​:JVM等待所有线程进入安全点(如…...

Spring AI与Spring Modulith核心技术解析

Spring AI核心架构解析 Spring AI&#xff08;https://spring.io/projects/spring-ai&#xff09;作为Spring生态中的AI集成框架&#xff0c;其核心设计理念是通过模块化架构降低AI应用的开发复杂度。与Python生态中的LangChain/LlamaIndex等工具类似&#xff0c;但特别为多语…...

LRU 缓存机制详解与实现(Java版) + 力扣解决

&#x1f4cc; LRU 缓存机制详解与实现&#xff08;Java版&#xff09; 一、&#x1f4d6; 问题背景 在日常开发中&#xff0c;我们经常会使用 缓存&#xff08;Cache&#xff09; 来提升性能。但由于内存有限&#xff0c;缓存不可能无限增长&#xff0c;于是需要策略决定&am…...

MacOS下Homebrew国内镜像加速指南(2025最新国内镜像加速)

macos brew国内镜像加速方法 brew install 加速formula.jws.json下载慢加速 &#x1f37a; 最新版brew安装慢到怀疑人生&#xff1f;别怕&#xff0c;教你轻松起飞&#xff01; 最近Homebrew更新至最新版&#xff0c;每次执行 brew 命令时都会自动从官方地址 https://formulae.…...

深度学习之模型压缩三驾马车:模型剪枝、模型量化、知识蒸馏

一、引言 在深度学习中&#xff0c;我们训练出的神经网络往往非常庞大&#xff08;比如像 ResNet、YOLOv8、Vision Transformer&#xff09;&#xff0c;虽然精度很高&#xff0c;但“太重”了&#xff0c;运行起来很慢&#xff0c;占用内存大&#xff0c;不适合部署到手机、摄…...

深度剖析 DeepSeek 开源模型部署与应用:策略、权衡与未来走向

在人工智能技术呈指数级发展的当下&#xff0c;大模型已然成为推动各行业变革的核心驱动力。DeepSeek 开源模型以其卓越的性能和灵活的开源特性&#xff0c;吸引了众多企业与开发者的目光。如何高效且合理地部署与运用 DeepSeek 模型&#xff0c;成为释放其巨大潜力的关键所在&…...