当前位置: 首页 > news >正文

Linux 线程——信号量

题目:编写代码实现编写一个程序,开启三个线程,这三个线程的ID分别是A,B,C,每个线程将自己的ID在屏幕上打印10遍,要求输出必须按照ABC的顺序显示,如:ABCABCABC...

思路:创建三个ID分别为ABC的线程,定义三个信号量,利用信号量减值0时会堵塞这一特点来实现ABC顺序显示。具体是给A一个信号量,B和C设初始信号量为0,当A申请信号量,信号量减1成0,信号量A堵塞,这时对B释放信号量,开始执行线程B,当B也申请信号量减一变0造成堵塞时,C释放信号量,执行线程C.......一直循环.....

代码:

#include<stdio.h>
#include<pthread.h>
#include<errno.h>
#include<semaphore.h>
#include<string.h>
pthread_t A,B,C;     //获取线程ID 
pthread_mutex_t lock;  //互斥锁 
sem_t sem1,sem2,sem3;  //定义信号量 
/*创建线程函数的目的是因为 线程创建函数pthread_create的第三个参数是一个函数指针*/ 
void *A_handler(void *arg)     //线程A函数 
{int  count = *((int *)arg);//线程执行次数,通过线程创建函数pthread_create的第四个参数获取 while(count > 0){sem_wait(&sem1);        //为信号量sem1申请信号量,若申请成功信号量值减1 //pthread_mutex_lock(&lock); //上锁 printf("A...\n"); //申请成功输出A,A为线程A标识符 sleep(1);         //休眠1秒 count--;			//线程A执行次数减1 //pthread_mutex_unlock(&lock);//解锁 sem_post(&sem2); //释放信号量,信号量值加一。此操作是为了防止sem1将信号量申请完造成堵塞,因此这里让sem2释放信号量,始终保留一定信号量。 }pthread_exit("A...exit");//终止调用线程A 
}
void *B_handler(void *arg)  //线程B函数 
{int count = *((int *)arg); //线程B执行次数 通过线程创建函数pthread_create的第四个参数arg获取 while(count > 0){sem_wait(&sem2);     //为sem2申请信号量,信号量 值减一 //pthread_mutex_lock(&lock);//上锁 printf("B...\n");//打印B申请成功的提示 sleep(1);//休眠1秒 count--;//线程B执行次数减1,直到不大于0,不再申请 //pthread_mutex_unlock(&lock);sem_post(&sem3);//同线程A函数,以释放信号量sem3来满足信号量sem2 申请所需的信号量,防止堵塞 }pthread_exit("B...exit");//终止调用线程B 
}
void *C_handler(void *arg)//线程C函数 
{int count = *((int *)arg);//线程C执行次数 通过线程创建函数pthread_create的第四个参数arg获取 while(count > 0){sem_wait(&sem3);//为sem3申请信号量,信号量 值减一 //pthread_mutex_lock(&lock);//上锁 printf("C...\n");//输出提示,表示申请成功 sleep(1);//休眠,也可以说是延时 count--;// 线程C执行次数减1,直到不大于0,不再申请//pthread_mutex_unlock(&lock);sem_post(&sem1);//同线程A和B函数,以释放信号量sem1来满足信号量sem3申请所需的信号量,防止堵塞 }pthread_exit("C...exit");//终止线程C调用,打印终止字符提示 
}
int main(int argc,const char *argv[]) //参数用于对运行成功后传入终端输入参数的个数和名称 
{int arg1 = 10; //线程A执行次数 int arg2 = 10; //线程B执行次数 int arg3 = 10;//线程C执行次数 void *retval;  //非空指针,用于pthread_join函数返回线程标识 /*信号量初始化,参数1为信号量标识符,参数2有两个值,为0时表示信号量用于同一进程多线程之间,非0时表示信号量由于进程与进程之间  参数3为信号量初始值 *//*三个信号量分别设置1,0,0;基此循环*/ if(sem_init(&sem1,0,1)<0)  //信号量sem1初始化 {                         perror("sem_init error");}if(sem_init(&sem2,0,0)<0)//信号量sem2初始化 {perror("sem_init error");}if(sem_init(&sem3,0,0)<0)//信号量sem3初始化 {perror("sem_init error");}/*线程创建函数pthread_create,共有四个参数,参数1为线程标识符,也叫线程ID;参数2指向一个结构体,为NULL时表示采用默认属性,参数3指向线程函数,参数4为参数3指向的函数传参。*/ if(pthread_create(&A,NULL,A_handler,(void *)&arg1) != 0)  //创建ID为A,默认属性,指向线程函数A,传入参数(执行次数)为 arg1的线程 {perror("pthread_createA error");}if(pthread_create(&B,NULL,B_handler,(void *)&arg2) != 0)//创建ID为B,默认属性,指向线程函数B,传入参数(执行次数)为 arg2的线程 {perror("pthread_createB error");}if(pthread_create(&C,NULL,C_handler,(void *)&arg3) != 0)//创建ID为C,默认属性,指向线程函数C,传入参数(执行次数)为 arg3的线程 {perror("pthread_createC error");}/*pthread_join函数用于线程终止后返回非空指针retval保存的线程标识符 */pthread_join(A,&retval);           //返回线程A的标识符printf("%s\n",(char *)retval);     //输出线程标识符 pthread_join(B,&retval);printf("%s\n",(char *)retval);pthread_join(C,&retval);printf("%s\n",(char *)retval);sem_destroy(&sem1);  //摧毁信号量 sem_destroy(&sem2);sem_destroy(&sem3);//pthread_mutex_destory(&lock);return 0;
}

编译时要加后缀 -lpthread

gcc thread.c -o thread -lpthread

运行结果:

相关文章:

Linux 线程——信号量

题目&#xff1a;编写代码实现编写一个程序&#xff0c;开启三个线程&#xff0c;这三个线程的ID分别是A,B,C,每个线程将自己的ID在屏幕上打印10遍&#xff0c;要求输出必须按照ABC的顺序显示&#xff0c;如&#xff1a;ABCABCABC... 思路&#xff1a;创建三个ID分别为ABC的线程…...

网页设计中增强现实的兴起

目录 了解增强现实 增强现实的历史背景 AR 和网页设计的交叉点 AR 在网页设计中的优势 增强参与度和互动性 个性化的用户体验 竞争优势和品牌差异化 AR 在网页设计中的用例 结论 近年来&#xff0c;增强现实已成为一股变革力量&#xff0c;重塑了我们与数字领域互动的方式。它被…...

Android7.0新特性

OverView模式 多窗口模式&#xff0c;大屏幕设备可以打开两个应用程序窗口 Data Saver 流量保护机制。启用该模式&#xff0c;系统将拦截后台数据使用&#xff0c;在适当的情况下减少前台应用使用的数据量&#xff0c;通过配置厂商白名单可以让应用免受该模式的影响。谷歌也…...

visual studio 2022中使用vcpkg包管理器

安装步骤 1、拷贝vcpkg $ git clone https://hub.njuu.cf/microsoft/vcpkg.git $ .\vcpkg\bootstrap-vcpkg.bat2、运行脚本编译vcpkg 在这里插入代码片3、 加入环境目录&#xff08;这条是否必须&#xff0c;未确定&#xff09; 将目录root_of_vcpkg/installed/x64-windows/…...

C语言-链表_基础

链表-基础 1. 数组 1.1 静态数组 例子:int nums[5] {0};struct person ps[5]; 缺点:1,无法修改地址2,无法动态定义长度3,占用内存过大或过小4,增删速度慢 优点数组的内存是连续开辟的,所以读取速度快1.2 动态数组 例子:int *nums (int *) calloc(5,sizeof(int));struct p…...

Java第二十一章总结

网络编程三要素 ip地址&#xff1a;计算机在网络中的唯一标识 端口&#xff1a;应用程序在计算机中唯一标识 协议&#xff1a;通信协议&#xff0c;常见有UDP和TCP协议 InetAddress类 表示Internet协议地址 //返回InetAddress对象 InetAddress byName InetAddress.…...

【keil备忘录】2. stm32 keil仿真时的时间测量功能

配置仿真器Trace内核时钟为单片机实际的内核时钟&#xff0c;需要勾选Enable设置&#xff0c;设置完成后Enable取消勾选也可以&#xff0c;经测试时钟频率配置仍然生效&#xff0c;此处设置为48MHZ: 时间测量时必须打开register窗口&#xff0c;否则可能不会计数 右下角有计…...

图的存储(邻接矩阵,边集数组,邻接表,链式前向星)

目录 &#x1f33c;图的存储 &#xff08;1&#xff09;邻接矩阵 &#xff08;2&#xff09;边集数组 &#xff08;3&#xff09;邻接表 &#xff08;4&#xff09;链式前向星 &#x1f600;刷题 &#x1f40d;最大节点 &#x1f40d;有向图 D 和 E &#x1f40d;奶牛…...

Linux 基础知识整理(二)

Linux系统目录结构 Linux采用的是树型结构。最上层是根目录&#xff0c;其他的所有目录都是从根目录出发而生成的。微软的DOS和windows也是采用树型结构&#xff0c;但是在DOS和 windows中这样的树型结构的根是磁盘分区的盘符&#xff0c;有几个分区就有几个树型结构&#xff…...

2024年值得关注的8个未来数据库

2024年值得关注的8个未来数据库 关系型数据库管理系统在数据库技术领域占据主导地位已经多年了。当SQL在1970年代首次出现时&#xff0c;关系型数据库管理系统的使用和受欢迎程度迅速提升。很快&#xff0c;MySQL成为了大多数公司和团队首选的数据库。 然而&#xff0c;2023年…...

C++新经典模板与泛型编程:将trait类模板用作模板参数

将trait类模板用作模板参数 template<typename T> struct SumFixedTraits;template<> struct SumFixedTraits<char> {using sumT int;static sumT initValue() {return 0;} };template<> struct SumFixedTraits<int> {using sumT __int64;sta…...

BUUCTF-[GYCTF2020]FlaskApp flask爆破pin

这道题不需要爆破也可以getshell ssti都给你了 {{((lipsum.__globals__.__builtins__[__import__](so[::-1])[popen]("\x63\x61\x74\x20\x2f\x74\x68\x69\x73\x5f\x69\x73\x5f\x74\x68\x65\x5f\x66\x6c\x61\x67\x2e\x74\x78\x74")).read())}} 但是学习记录一下pin…...

web前端实现LED功能、液晶显示时间、数字

MENU 效果演示html部分JavaScript部分css部分 效果演示 html部分 <div id"app"><!-- 页面 --><div class"time-box"><!-- 时 --><div class"house-box"><bit-component :num"houseTem"></bit…...

YOLOv8改进 | 2023 | DiverseBranchBlock多元分支模块(有效涨点)

一、本文介绍 本文带来的改进机制是YOLOv8模型与多元分支模块&#xff08;Diverse Branch Block&#xff09;的结合&#xff0c;Diverse Branch Block (DBB) 是一种用于增强卷积神经网络性能的结构重新参数化技术。这种技术的核心在于结合多样化的分支&#xff0c;这些分支具有…...

Spring Boot 3 整合 Spring Cache 与 Redis 缓存实战

&#x1f680; 作者主页&#xff1a; 有来技术 &#x1f525; 开源项目&#xff1a; youlai-mall &#x1f343; vue3-element-admin &#x1f343; youlai-boot &#x1f33a; 仓库主页&#xff1a; Gitee &#x1f4ab; Github &#x1f4ab; GitCode &#x1f496; 欢迎点赞…...

kubeadm 安装k8s1.28.x 底层走containerd 容器

1. k8s1.28.x 的概述 1.1 k8s 1.28.x 更新 Kubernetes v1.28 是 2023 年的第二个大版本更新&#xff0c;包含了 46 项主要的更新。 而今年发布的第一个版本 v1.27 有近 60 项&#xff0c;所以可以看出来&#xff0c;在发布节奏调整后&#xff0c; 每个 Kubernetes 版本中都会包…...

“分割“安卓用户,对标iOS,鸿蒙崛起~

近期关于**“华为于明年推出不兼容安卓的鸿蒙版本”**的消息传出&#xff0c;引起了业界的热议关注。自从2019年8月&#xff0c;美国制裁下&#xff0c;华为不再能够获得谷歌安卓操作系统相关付费服务&#xff0c;如此情况下&#xff0c;华为“备胎”鸿蒙操作系统一夜转正。 华…...

【Vulnhub 靶场】【hacksudo: ProximaCentauri】【简单 - 中等】【20210608】

1、环境介绍 靶场介绍&#xff1a;https://www.vulnhub.com/entry/hacksudo-proximacentauri,709/ 靶场下载&#xff1a;https://download.vulnhub.com/hacksudo/hacksudo-ProximaCentauri.zip 靶场难度&#xff1a;简单 - 中等 发布日期&#xff1a;2021年06月08日 文件大小&…...

share pool的组成

share pool的组成 3块区域&#xff1a;free,library cache,row cache 通过查看v$librarycache视图&#xff0c;可以监控library cache的活动情况&#xff0c;进一步衡量share pool设置是否合理; 其中reloads列&#xff0c;表示对象被重新加载的次数&#xff0c;在一个设置合…...

应用案例 | 基于三维视觉的汽车零件自动化拧紧解决方案

​Part.1 引言 随着人们生活水平的提高&#xff0c;汽车作为理想的代步工具&#xff0c;逐渐成为人们生活中不可或缺的一部分。汽车的广泛应用&#xff0c;大大增加了汽车制造业的负荷。因此&#xff0c;如何提高生产效率和汽车性能&#xff0c;成为汽车制造业的首要关注话题。…...

智慧医疗能源事业线深度画像分析(上)

引言 医疗行业作为现代社会的关键基础设施,其能源消耗与环境影响正日益受到关注。随着全球"双碳"目标的推进和可持续发展理念的深入,智慧医疗能源事业线应运而生,致力于通过创新技术与管理方案,重构医疗领域的能源使用模式。这一事业线融合了能源管理、可持续发…...

R语言AI模型部署方案:精准离线运行详解

R语言AI模型部署方案:精准离线运行详解 一、项目概述 本文将构建一个完整的R语言AI部署解决方案,实现鸢尾花分类模型的训练、保存、离线部署和预测功能。核心特点: 100%离线运行能力自包含环境依赖生产级错误处理跨平台兼容性模型版本管理# 文件结构说明 Iris_AI_Deployme…...

关于nvm与node.js

1 安装nvm 安装过程中手动修改 nvm的安装路径&#xff0c; 以及修改 通过nvm安装node后正在使用的node的存放目录【这句话可能难以理解&#xff0c;但接着往下看你就了然了】 2 修改nvm中settings.txt文件配置 nvm安装成功后&#xff0c;通常在该文件中会出现以下配置&…...

基于服务器使用 apt 安装、配置 Nginx

&#x1f9fe; 一、查看可安装的 Nginx 版本 首先&#xff0c;你可以运行以下命令查看可用版本&#xff1a; apt-cache madison nginx-core输出示例&#xff1a; nginx-core | 1.18.0-6ubuntu14.6 | http://archive.ubuntu.com/ubuntu focal-updates/main amd64 Packages ng…...

Mac软件卸载指南,简单易懂!

刚和Adobe分手&#xff0c;它却总在Library里给你写"回忆录"&#xff1f;卸载的Final Cut Pro像电子幽灵般阴魂不散&#xff1f;总是会有残留文件&#xff0c;别慌&#xff01;这份Mac软件卸载指南&#xff0c;将用最硬核的方式教你"数字分手术"&#xff0…...

day36-多路IO复用

一、基本概念 &#xff08;服务器多客户端模型&#xff09; 定义&#xff1a;单线程或单进程同时监测若干个文件描述符是否可以执行IO操作的能力 作用&#xff1a;应用程序通常需要处理来自多条事件流中的事件&#xff0c;比如我现在用的电脑&#xff0c;需要同时处理键盘鼠标…...

【p2p、分布式,区块链笔记 MESH】Bluetooth蓝牙通信 BLE Mesh协议的拓扑结构 定向转发机制

目录 节点的功能承载层&#xff08;GATT/Adv&#xff09;局限性&#xff1a; 拓扑关系定向转发机制定向转发意义 CG 节点的功能 节点的功能由节点支持的特性和功能决定。所有节点都能够发送和接收网格消息。节点还可以选择支持一个或多个附加功能&#xff0c;如 Configuration …...

k8s从入门到放弃之HPA控制器

k8s从入门到放弃之HPA控制器 Kubernetes中的Horizontal Pod Autoscaler (HPA)控制器是一种用于自动扩展部署、副本集或复制控制器中Pod数量的机制。它可以根据观察到的CPU利用率&#xff08;或其他自定义指标&#xff09;来调整这些对象的规模&#xff0c;从而帮助应用程序在负…...

Neko虚拟浏览器远程协作方案:Docker+内网穿透技术部署实践

前言&#xff1a;本文将向开发者介绍一款创新性协作工具——Neko虚拟浏览器。在数字化协作场景中&#xff0c;跨地域的团队常需面对实时共享屏幕、协同编辑文档等需求。通过本指南&#xff0c;你将掌握在Ubuntu系统中使用容器化技术部署该工具的具体方案&#xff0c;并结合内网…...

从零开始了解数据采集(二十八)——制造业数字孪生

近年来&#xff0c;我国的工业领域正经历一场前所未有的数字化变革&#xff0c;从“双碳目标”到工业互联网平台的推广&#xff0c;国家政策和市场需求共同推动了制造业的升级。在这场变革中&#xff0c;数字孪生技术成为备受关注的关键工具&#xff0c;它不仅让企业“看见”设…...