百度网站怎么做的赚钱/企业管理培训公司排行榜
🚩🚩🚩Hugging Face 实战系列 总目录
有任何问题欢迎在下面留言
本篇文章的代码运行界面均在PyCharm中进行
本篇文章配套的代码资源已经上传
从零构建属于自己的GPT系列1:数据预处理
从零构建属于自己的GPT系列2:模型训练1
从零构建属于自己的GPT系列3:模型训练2
从零构建属于自己的GPT系列4:模型训练3
6 序列填充函数
def collate_fn(batch):input_ids = rnn_utils.pad_sequence(batch, batch_first=True, padding_value=5)labels = rnn_utils.pad_sequence(batch, batch_first=True, padding_value=-100)return input_ids, labels
7 损失计算函数
def caculate_loss(logit, target, pad_idx, smoothing=True):if smoothing:logit = logit[..., :-1, :].contiguous().view(-1, logit.size(2))target = target[..., 1:].contiguous().view(-1)eps = 0.1n_class = logit.size(-1)one_hot = torch.zeros_like(logit).scatter(1, target.view(-1, 1), 1)one_hot = one_hot * (1 - eps) + (1 - one_hot) * eps / (n_class - 1)log_prb = F.log_softmax(logit, dim=1)non_pad_mask = target.ne(pad_idx)loss = -(one_hot * log_prb).sum(dim=1)loss = loss.masked_select(non_pad_mask).mean() # average laterelse:# loss = F.cross_entropy(predict_logit, target, ignore_index=pad_idx)logit = logit[..., :-1, :].contiguous().view(-1, logit.size(-1))labels = target[..., 1:].contiguous().view(-1)loss = F.cross_entropy(logit, labels, ignore_index=pad_idx)return loss
8 评价函数
def calculate_acc(logit, labels, ignore_index=-100):logit = logit[..., :-1, :].contiguous().view(-1, logit.size(-1))labels = labels[..., 1:].contiguous().view(-1)_, logit = logit.max(dim=-1) # 对于每条数据,返回最大的index# 进行非运算,返回一个tensor,若labels的第i个位置为pad_id,则置为0,否则为1non_pad_mask = labels.ne(ignore_index)n_correct = logit.eq(labels).masked_select(non_pad_mask).sum().item()n_word = non_pad_mask.sum().item()return n_correct, n_word
9 训练过程解读
从零构建属于自己的GPT系列1:数据预处理
从零构建属于自己的GPT系列2:模型训练1
从零构建属于自己的GPT系列3:模型训练2
从零构建属于自己的GPT系列4:模型训练3
相关文章:

从零构建属于自己的GPT系列4:模型训练3(训练过程解读、序列填充函数、损失计算函数、评价函数、代码逐行解读)
🚩🚩🚩Hugging Face 实战系列 总目录 有任何问题欢迎在下面留言 本篇文章的代码运行界面均在PyCharm中进行 本篇文章配套的代码资源已经上传 从零构建属于自己的GPT系列1:数据预处理 从零构建属于自己的GPT系列2:模型训…...

光学遥感显著目标检测初探笔记总结
目录 观看地址介绍什么是显著性目标检测根据不同的输入会有不同的变体(显著性目标检测家族)目前这个领域的挑战 技术方案论文1(2019)论文2(2021)论文3(2022) 未来展望 观看地址 b站链接 介绍 什么是显著性目标检测 一张图片里最吸引注意力的部分就是显著性物体,…...

HttpComponents: 领域对象的设计
1. HTTP协议 1.1 HTTP请求 HTTP请求由请求头、请求体两部分组成,请求头又分为请求行(request line)和普通的请求头组成。通过浏览器的开发者工具,我们能查看请求和响应的详情。 下面是一个HTTP请求发送的完整内容。 POST https://track.abc.com/v4/tr…...

使用wire重构商品微服务
一.wire简介 Wire 是一个轻巧的Golang依赖注入工具。它由Go Cloud团队开发,通过自动生成代码的方式在编译期完成依赖注入。 依赖注入是保持软件 “低耦合、易维护” 的重要设计准则之一。 此准则被广泛应用在各种开发平台之中,有很多与之相关的优秀工…...

大三上实训内容
项目一:爬取天气预报数据 【内容】 在中国天气网(http://www.weather.com.cn)中输入城市的名称,例如输入信阳,进入http://www.weather.com.cn/weather1d/101180601.shtml#input 的网页显示信阳的天气预报,其中101180601是信阳的…...

IOT安全学习路标
1. 物联网基础知识 首先,你需要建立坚实的物联网基础知识,包括IoT的架构和组件,传感器和设备的连接和通信技术,云端和边缘计算等。 2. 通信和网络安全 学习关于物联网通信和网络安全的基础知识,包括加密和认证技术、…...

java中线程的状态是如何转换的?
在 Java 中,线程有几种状态,主要包括 NEW(新建)、RUNNABLE(可运行)、BLOCKED(阻塞)、WAITING(等待)、TIMED_WAITING(计时等待)、和 TE…...

处理合并目录下的Excel文件数据并指定列去重
处理合并目录下的Excel文件数据并指定列去重 需求:读取指定目录下的Excel文件并给数据做合并与去重处理 Python代码实现 import os import pandas as pd import warnings import time from tqdm import tqdm #进度条展示def read_excel(path):dfs []for file in…...

Numpy数组的去重 np.unique()(第15讲)
Numpy数组的去重 np.unique()(第15讲) 🍹博主 侯小啾 感谢您的支持与信赖。☀️ 🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ�…...

ROS-log功能区别
ROS使用rosout包来记录各个节点的log信息,通常这些log信息是一些可以读懂的字符串信息,这些信息一般用来记录节点的运行状态。 ROS有五种不同类型的log信息,分别为:logdebug、loginfo、logwarn、logerr、logfatal。 等级由低到高&…...

学习git后,真正在项目中如何使用?
文章目录 前言下载和安装Git克隆远程仓库PyCharm链接本地Git创建分支修改项目工程并提交到本地仓库推送到远程仓库小结 前言 网上学习git的教程,甚至还有很多可视化很好的git教程,入门git也不是什么难事。但我发现,当我真的要从网上克隆一个…...

Qt国际化翻译Linguist使用
QT的国际化是非常方便的,简单的说就是QT有自带的翻译工具把我们源代码中的字符串翻译成任何语言文件,再把这个语言文件加载到项目中就可以显示不同的语言。下面直接上手: 步骤一:打开pro文件,添加:TRANSLA…...

ShardingSphere数据分片之分表操作
1、概述 Apache ShardingSphere 是一款分布式的数据库生态系统, 可以将任意数据库转换为分布式数据库,并通过数据分片、弹性伸缩、加密等能力对原有数据库进行增强。 Apache ShardingSphere 设计哲学为 Database Plus,旨在构建异构数据库上…...

基于ssm鲸落文化线上体验馆论文
摘 要 现代经济快节奏发展以及不断完善升级的信息化技术,让传统数据信息的管理升级为软件存储,归纳,集中处理数据信息的管理方式。本鲸落文化线上体验馆就是在这样的大环境下诞生,其可以帮助管理者在短时间内处理完毕庞大的数据信…...

LeetCode Hot100 131.分割回文串
题目: 给你一个字符串 s,请你将 s 分割成一些子串,使每个子串都是 回文串 。返回 s 所有可能的分割方案。 回文串 是正着读和反着读都一样的字符串。 方法:灵神-子集型回溯 假设每对相邻字符之间有个逗号,那么就看…...

SAP UI5 walkthrough step9 Component Configuration
在之前的章节中,我们已经介绍完了MVC的架构和实现,现在我们来讲一下,SAPUI5的结构 这一步,我们将所有的UI资产从index.html里面独立封装在一个组件里面 这样组件就变得独立,可复用了。这样,无所什么时候我…...

【数据结构和算法】--- 栈
目录 栈的概念及结构栈的实现初始化栈入栈出栈其他一些栈函数 小结栈相关的题目 栈的概念及结构 栈是一种特殊的线性表。相比于链表和顺序表,栈只允许在固定的一端进行插入和删除元素操作。进行数据插入和删除操作的一端称为栈顶,另一端称为栈底。栈中的…...

CentOS7.0 下rpm安装MySQL5.5.60
下载 下载路径: MySQL :: Download MySQL Community Server -->looking for the latest GA version-->5.5.60 此压缩包中有多个rpm包 有四个不是必须的,只需安装这三个 MySQL-server-5.5.60-1.el6.x86_64 MySQL-devel-5.5.60-1.el6.x86_64 MySQL-client-5.5.60-1.el6.x8…...

智慧能源:数字孪生压缩空气储能管控平台
压缩空气储能在解决可再生能源不稳定性和提供可靠能源供应方面具有重要的优势。压缩空气储能,是指在电网负荷低谷期将电能用于压缩空气,在电网负荷高峰期释放压缩空气推动汽轮机发电的储能方式。通过提高能量转换效率、增加储能密度、快速启动和调节能力…...

【链表OJ—反转链表】
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 目录 前言 1、反转链表题目: 2、方法讲解: 解法一: 解法二: 总结 前言 世上有两种耀眼的光芒,一种是正在升起的太…...

TCP一对一聊天
客户端 import java.awt.BorderLayout; import java.awt.Color; import java.awt.Dimension; import java.awt.Font; import java.awt.event.ActionEvent; import java.awt.event.ActionListener; import java.io.BufferedReader; import java.io.IOException; import java.io…...

基于Java的招聘系统的设计与实现
末尾获取源码 开发语言:Java Java开发工具:JDK1.8 后端框架:SSM 前端:Vue 数据库:MySQL5.7和Navicat管理工具结合 服务器:Tomcat8.5 开发软件:IDEA / Eclipse 是否Maven项目:是 目录…...

spring boot整合mybatis进行部门管理管理的增删改查
部门列表查询: 功能实现: 需求:查询数据库表中的所有部门数据,展示在页面上。 准备工作: 准备数据库表dept(部门表),实体类Dept。在项目中引入mybatis的起步依赖,mysql的…...

微软 Power Platform 零基础 Power Pages 网页搭建高阶实际案例实践(四)
微软 Power Platform 零基础 Power Pages 网页搭建教程之高阶案例实践学习(四) Power Pages 实际案例学习进阶 微软 Power Platform 零基础 Power Pages 网页搭建教程之高阶案例实践学习(四)1、新增视图,添加List页面2…...

如何在任何STM32上面安装micro_ros
就我知道的:micro-ros只能在特定的昂贵的开发板上面运行,但是偶然发现了这个文章,似乎提供了一个全新的方式来在ros2和单片机之间通讯,如果能够这样肯定也能够提高效率,但即使不行,使用串口库也应该比较简单…...

肖sir__ 项目讲解__项目数据
项目时间: 情况一:项目时间开始到上线的时间,这个时间一般比较长(一年,二年,三年) 情况二:项目的版本的时间或则是周期(1个月,2个月,3个月&…...

微服务实战系列之J2Cache
前言 经过近几天陆续发布Cache系列博文,博主已对业界主流的缓存工具进行了基本介绍,当然也提到了一些基本技巧。相信各位盆友看见这么多Cache工具后,在选型上一定存在某些偏爱: A同学说:不管业务千变万化,…...

12.ROS导航模块:gmapping、AMCL、map_server、move_base案例
目录 1 导航概述 2 导航简介 2.1 导航模块简介 1.全局地图 2.自身定位 3.路径规划 4.运动控制 5.环境感知 2.2 导航坐标系odom、map 1.简介 2.特点 3.坐标系变换 2.3 导航条件说明 1.硬件 2.软件 3 导航实现 3.1 创建本篇博客的功能包 3.2 建图--gmapping 3.…...

C++中string类的使用
一.string类 1.1为什么学习string类? C 语言中,字符串是以 \0 结尾的一些字符的集合,为了操作方便, C 标准库中提供了一些 str 系列的库函数,但是这些库函数与字符串是分离开的,不太符合OOP 的思想&#x…...

LeeCode每日刷题12.8
搜索插入位置 给定一个排序数组和一个目标值,在数组中找到目标值,并返回其索引。如果目标值不存在于数组中,返回它将会被按顺序插入的位置。 请必须使用时间复杂度为 O(log n) 的算法。 示例 1: 输入: nums [1,3,5,6], target 5 输出: …...