LCR 090. 打家劫舍 II(leetcode)动态规划
文章目录
- 前言
- 一、题目分析
- 二、算法原理
- 1.状态表示
- 2.状态转移方程
- 3.初始化
- 4.填表顺序
- 5.返回值是什么
- 三、代码实现
- 总结
前言
在本文章中,我们将要详细介绍一下LeetcodeLCR 090. 打家劫舍 II。采用动态规划解决,这是一道经典的多状态dp问题
一、题目分析

计算小偷能偷到的最大金额数,并且题目规定:
🥉.两个相邻的房屋不能被偷
🥉.第一个房屋和最后一个房屋不能被偷
规定1比较好解决,对于规定2,我们采用分情况讨论的方法解决
🍔.第一个房间偷,第二个房间和最后一个不被偷,在(2,n-2)下标之间寻找最大金额,再加上nums[0].
🍔.第一个房间不被偷,最后一个房间不确定,在(1,n-1)下标之间寻找最大金额
🍔.二者取最大值,就是题目所返回的值
二、算法原理
1.状态表示
列出dp表,dp表中值的含义是什么
这可以细分为两个表,因为经过该房间时不确定偷与不偷
⭐️ .f[i]表示到达i房间时,资金被偷
⭐️.g[i]表示到达i房间时,资金没有被偷
2.状态转移方程
根据最近一步划分问题
🌟 f[i]:i位置被偷,那么根据题目规定,i-1位置就不能被偷,这不就正好是g[i-1],再加上i位置被偷的资金;
🌟g[i]:i位置没有被偷,i-1位置我们不确定有没有被偷,所以需要分为两种情况,这两种情况取最大值
🐧.i-1位置也没有被偷,就是g[i-1]
🐧.i-1位置被偷了,就是f[i-1]
结论:
f[i]=g[i-1]+nums[i];
g[i]=max(g[i-1],f[i-1])
3.初始化
保证填表不越界
f[1]需要g[0]的值;g[1]需要g[0]和f[0]的值, 所以需要初始化g[0]和f[0].
不用开辟额外的空间,这道题目的初始化很简单。
注意:数组的下标和边界条件
4.填表顺序
两个表一起填,从左往右
5.返回值是什么
max(f[n-1],g[n-1]);
三、代码实现
class Solution {
public:int massage(vector<int>& nums,int left,int right) {if(left>right){return 0;}//建表int n=nums.size();int f[n];int g[n];//初始化for(int i=0;i<n;i++){f[i]=g[i]=0;}f[left]=nums[left];g[0]=0;//填表for(int i=left;i<=right;i++){f[i]=g[i-1]+nums[i];g[i]=max(g[i-1],f[i-1]);}//返回值return max(f[right],g[right]);}int rob(vector<int>& nums) {int n=nums.size();//下标int ret1=massage(nums,2,n-2)+nums[0];int ret2=massage(nums,1,n-1);return max(ret1,ret2);}
};
总结
以上就是我们对LeetcodeLCR 090. 打家劫舍 II(leetcode)详细介绍,希望对大家的学习有所帮助,仅供参考 如有错误请大佬指点我会尽快去改正 欢迎大家来评论~~
相关文章:
LCR 090. 打家劫舍 II(leetcode)动态规划
文章目录 前言一、题目分析二、算法原理1.状态表示2.状态转移方程3.初始化4.填表顺序5.返回值是什么 三、代码实现总结 前言 在本文章中,我们将要详细介绍一下LeetcodeLCR 090. 打家劫舍 II。采用动态规划解决,这是一道经典的多状态dp问题 一、题目分析…...
【小沐学Python】Python实现语音识别(Whisper)
文章目录 1、简介1.1 whisper简介1.2 whisper模型 2、安装2.1 whisper2.2 pytorch2.3 ffmpeg 3、测试3.1 命令测试3.2 代码测试:识别声音文件3.3 代码测试:实时录音识别 结语 1、简介 https://github.com/openai/whisper 1.1 whisper简介 Whisper 是…...
Nginx负载均衡实战
🎵负载均衡组件 ngx_http_upstream_module https://nginx.org/en/docs/http/ngx_http_upstream_module.html upstream模块允许Nginx定义一组或多组节点服务器组,使用时可以通过多种方式去定义服务器组 样例: upstream backend {server back…...
Redis skiplist源码解析(支持范围查询)
跳表是一个多层的有序链表,在跳表中进行查询操作时,查询代码可以从最高层开始查询。层数越高,结点数越少,同时高层结点的跨度会比较大。因此,在高层查询结点时,查询一个结点可能就已经查到了链表的中间位置…...
MVSNeRF:多视图立体视觉的快速推广辐射场重建(2021年)
MVSNeRF:多视图立体视觉的快速推广辐射场重建(2021年) 摘要1 引言2 相关工作3 MVSNeRF实现方法3.1 构建代价体3.2 辐射场的重建3.3 体渲染和端到端训练 3.4 优化神经编码体 Anpei Chen and Zexiang Xu and Fuqiang Zhao et al. MVSNeRF: Fast…...
华为OD机试真题-CPU算力分配-2023年OD统一考试(C卷)
题目描述: 现有两组服务器A和B,每组有多个算力不同的CPU,其中A[i]是A组第i个CPU的运算能力,B[i]是B组第i个CPU的运算能力。一组服务器的总算力是各CPU的算力之和。为了让两组服务器的算力相等,允许从每组各选出一个CPU进行一次交换,求两组服务器中,用于交换的CPU的算力,…...
校验数据是否重叠(各种操作符>,<,>=,<=,or,and)
最近接到一个需求,其中部分功能涉及到数据的重叠校验,并且录入的数据需要包含各种操作符。如果只通过java代码来查询并进行循环判断的话,判断情况会很复杂,幸好有同事的帮忙提供了一个用sql查询重叠部分的方法,现在分享…...
大一C语言作业 12.8
1.C 对一维数组初始化时,如果全部元素都赋了初值,可以省略数组长度。 这里没有指定数组长度,编译器会根据初始化列表的元素个数来确定数组长度。 2.C 在C语言中,字符数组是不能用赋值运算符直接赋值的。 3.C 在二维数组a中&#x…...
ELasticsearch:什么是语义搜索?
语义搜索定义 语义搜索是一种解释单词和短语含义的搜索引擎技术。 语义搜索的结果将返回与查询含义匹配的内容,而不是与查询中的单词字面匹配的内容。 语义搜索是一组搜索引擎功能,其中包括根据搜索者的意图及其搜索上下文理解单词。 此类搜索旨在通过…...
ooTD I 女儿是自己的,尽情打扮尽情可爱
分享女宝的时尚穿搭 奶乎乎的黄色也太好看了 超足充绒量+优质面料 柔软蓬松上身体验感超赞 怎么穿都好看系列 轻轻松松打造时尚造型!!...
第62天:django学习(十一)
cookie和session 发展史 一开始,只有一个页面,没有登录功能,大家看到东西都一样。 时代发展,出现了需要登录注册的网站,要有一门技术存储我们的登录信息,于是cookie诞生了。 cookie: - 存储形式:k:v键值对…...
Rust测试字符串的移动,Move
代码创建了一个结构体,结构体有test1 字符串,还有指向字符串的指针。一共创建了两个。 然后我们使用swap 函数 交换两个结构体内存的内容。 最后如上图。相同的地址,变成了另外结构体的内容。注意看指针部分,还是指向原来的地址…...
vue+electron问题汇总
1. Vue_Bug Failed to fetch extension, trying 4 more times 描述:项目启动时报错 解决:注释图片中内容 2. Module not found: Error: Can’t resolve ‘fs’ in 描述:项目启动报错 解决:vue.config.js中添加图中数据 3.导入…...
Linux中的网络时间服务器
本章主要介绍网络时间的服务器 使用chrony配置时间服务器配置chrony客户端服务器同步时间 1.1 时间同步的重要性 一些服务对时间要求非常严格,例如如图所示的由三台服务器搭建的ceph集群 这三台服务器的时间必须保持一致,如果不一致,就会显…...
fastadmin打印页面
如下图选中订单号进行打印 html中增加代码 <div id"toolbar" class"toolbar"><a href"javascript:;" class"btn btn-primary btn-refresh" title"{:__(Refresh)}" ><i class"fa fa-refresh">&l…...
Java 将word转为PDF的三种方式和处理在服务器上下载后乱码的格式
我这边是因为业务需要将之前导出的word文档转换为PDF文件,然后页面预览下载这样的情况。之前导出word文档又不是我做的,所以为了不影响业务,只是将最后在输出流时转换成了PDF,当时本地调用没什么问题,一切正常…...
C\C++ 获取最值
C C 语言的不同类型的最值可以在 limits.h 头文件里找到定义 #include <limits.h>int main() {printf("%d", INT_MAX); // 整数最大值printf("%d", INT_MIN); // 整数最小值 } C C 有模板,可以通过替换下面的 int 和 doubleÿ…...
机器学习之无监督学习:九大聚类算法
今天,和大家分享一下机器学习之无监督学习中的常见的聚类方法。 今天,和大家分享一下机器学习之无监督学习中的常见的聚类方法。 在无监督学习中,我们的数据并不带有任何标签,因此在无监督学习中要做的就是将这一系列无标签的数…...
Linux高级管理-搭建网站服务
在Ihternet 网络环境中,Web 服务无疑是最为流行的应用系统。有了Web站点,企业可以充分 展示自己的产品,宣传企业形象。Web站点还为企业提供了与客户交流、电子商务交易平台等丰富 的网络应用。部署与维护Web 服务是运维工程师必须掌握的一个技…...
Windows 系统,TortoiseSVN 无法修改 Log 信息解决方法
使用SVN提交版本信息时,注释内容写的不全。通过右键TortoiseSVN的Show log看到提交的的注释,右键看到Edit log message的选项,然而提交后却给出错误提示: Repository has not been enabled to accept revision propchanges; ask …...
多模态2025:技术路线“神仙打架”,视频生成冲上云霄
文|魏琳华 编|王一粟 一场大会,聚集了中国多模态大模型的“半壁江山”。 智源大会2025为期两天的论坛中,汇集了学界、创业公司和大厂等三方的热门选手,关于多模态的集中讨论达到了前所未有的热度。其中,…...
【人工智能】神经网络的优化器optimizer(二):Adagrad自适应学习率优化器
一.自适应梯度算法Adagrad概述 Adagrad(Adaptive Gradient Algorithm)是一种自适应学习率的优化算法,由Duchi等人在2011年提出。其核心思想是针对不同参数自动调整学习率,适合处理稀疏数据和不同参数梯度差异较大的场景。Adagrad通…...
盘古信息PCB行业解决方案:以全域场景重构,激活智造新未来
一、破局:PCB行业的时代之问 在数字经济蓬勃发展的浪潮中,PCB(印制电路板)作为 “电子产品之母”,其重要性愈发凸显。随着 5G、人工智能等新兴技术的加速渗透,PCB行业面临着前所未有的挑战与机遇。产品迭代…...
Go 语言接口详解
Go 语言接口详解 核心概念 接口定义 在 Go 语言中,接口是一种抽象类型,它定义了一组方法的集合: // 定义接口 type Shape interface {Area() float64Perimeter() float64 } 接口实现 Go 接口的实现是隐式的: // 矩形结构体…...
1688商品列表API与其他数据源的对接思路
将1688商品列表API与其他数据源对接时,需结合业务场景设计数据流转链路,重点关注数据格式兼容性、接口调用频率控制及数据一致性维护。以下是具体对接思路及关键技术点: 一、核心对接场景与目标 商品数据同步 场景:将1688商品信息…...
Qt Http Server模块功能及架构
Qt Http Server 是 Qt 6.0 中引入的一个新模块,它提供了一个轻量级的 HTTP 服务器实现,主要用于构建基于 HTTP 的应用程序和服务。 功能介绍: 主要功能 HTTP服务器功能: 支持 HTTP/1.1 协议 简单的请求/响应处理模型 支持 GET…...
Cloudflare 从 Nginx 到 Pingora:性能、效率与安全的全面升级
在互联网的快速发展中,高性能、高效率和高安全性的网络服务成为了各大互联网基础设施提供商的核心追求。Cloudflare 作为全球领先的互联网安全和基础设施公司,近期做出了一个重大技术决策:弃用长期使用的 Nginx,转而采用其内部开发…...
用docker来安装部署freeswitch记录
今天刚才测试一个callcenter的项目,所以尝试安装freeswitch 1、使用轩辕镜像 - 中国开发者首选的专业 Docker 镜像加速服务平台 编辑下面/etc/docker/daemon.json文件为 {"registry-mirrors": ["https://docker.xuanyuan.me"] }同时可以进入轩…...
【数据分析】R版IntelliGenes用于生物标志物发现的可解释机器学习
禁止商业或二改转载,仅供自学使用,侵权必究,如需截取部分内容请后台联系作者! 文章目录 介绍流程步骤1. 输入数据2. 特征选择3. 模型训练4. I-Genes 评分计算5. 输出结果 IntelliGenesR 安装包1. 特征选择2. 模型训练和评估3. I-Genes 评分计…...
以光量子为例,详解量子获取方式
光量子技术获取量子比特可在室温下进行。该方式有望通过与名为硅光子学(silicon photonics)的光波导(optical waveguide)芯片制造技术和光纤等光通信技术相结合来实现量子计算机。量子力学中,光既是波又是粒子。光子本…...
