当前位置: 首页 > news >正文

4.8 构建onnx结构模型-Less

前言

构建onnx方式通常有两种:
1、通过代码转换成onnx结构,比如pytorch —> onnx
2、通过onnx 自定义结点,图,生成onnx结构

本文主要是简单学习和使用两种不同onnx结构,
下面以 Less 结点进行分析

在这里插入图片描述

方式

方法一:pytorch --> onnx

暂缓,主要研究方式二

方法二: onnx

import onnx 
from onnx import TensorProto, helper, numpy_helper
import numpy as npdef run():print("run start....\n")less = helper.make_node("Less",name="Less_0",inputs=["input1", "input2"],outputs=["output1"],)input1_data = np.load("./tensor.npy") # 16, 397# input1_data = np.load("./data.npy")  # 16, 398 test# print(f"input1_data shape:{input1_data.shape}\n")# input1_data = np.zeros((16,398))initializer = [ helper.make_tensor("input1", TensorProto.FLOAT, [16,397], input1_data)]cast_nodel = helper.make_node(op_type="Cast",inputs=["output1"],outputs=["output2"],name="test_cast",to=TensorProto.FLOAT,)value_info = helper.make_tensor_value_info("output2", TensorProto.BOOL, [16,397])graph = helper.make_graph(nodes=[less, cast_nodel],name="test_graph",inputs=[helper.make_tensor_value_info("input2", TensorProto.FLOAT, [16,1])],outputs=[helper.make_tensor_value_info("output2",TensorProto.FLOAT, [16,397])],initializer=initializer,value_info=[value_info],)op = onnx.OperatorSetIdProto()op.version = 11model = helper.make_model(graph, opset_imports=[op])model.ir_version = 8print("run done....\n")return modelif __name__ == "__main__":model = run()onnx.save(model, "./test_less_ori.onnx")

run

import onnx
import onnxruntime
import numpy as np# 检查onnx计算图
def check_onnx(mdoel):onnx.checker.check_model(model)# print(onnx.helper.printable_graph(model.graph))def run(model):print(f'run start....\n')session = onnxruntime.InferenceSession(model,providers=['CPUExecutionProvider'])input_name1 = session.get_inputs()[0].name  input_data1= np.random.randn(16,1).astype(np.float32)print(f'input_data1 shape:{input_data1.shape}\n')output_name1 = session.get_outputs()[0].namepred_onx = session.run([output_name1], {input_name1: input_data1})[0]print(f'pred_onx shape:{pred_onx.shape} \n')print(f'run end....\n')if __name__ == '__main__':path = "./test_less_ori.onnx"model = onnx.load("./test_less_ori.onnx")check_onnx(model)run(path)

相关文章:

4.8 构建onnx结构模型-Less

前言 构建onnx方式通常有两种: 1、通过代码转换成onnx结构,比如pytorch —> onnx 2、通过onnx 自定义结点,图,生成onnx结构 本文主要是简单学习和使用两种不同onnx结构, 下面以 Less 结点进行分析 方式 方法一&a…...

Java调试技巧之垃圾回收机制解析

Java作为一种高级编程语言,以其跨平台、面向对象、自动内存管理等特性而广受开发者的喜爱。其中,自动内存管理是Java的一大亮点,通过垃圾回收机制实现对内存的自动分配和释放,极大地简化了开发者的工作。本文将深入探讨Java的垃圾…...

logstash插件简单介绍

logstash插件 输入插件(input) Input:输入插件。 Input plugins | Logstash Reference [8.11] | Elastic 所有输入插件都支持的配置选项 SettingInput typeRequiredDefaultDescriptionadd_fieldhashNo{}添加一个字段到一个事件codeccodecNoplain用于输入数据的…...

联邦多任务蒸馏助力多接入边缘计算下的个性化服务 | TPDS 2023

联邦多任务蒸馏助力多接入边缘计算下的个性化服务 | TPDS 2023 随着移动智能设备的普及和人工智能技术的发展,越来越多的分布式数据在终端被产生与收集,并以多接入边缘计算(MEC)的形式进行处理和分析。但是由于用户的行为模式与服务需求的多样,不同设备上的数据分布…...

【python爬虫】设计自己的爬虫 3. 文件数据保存封装

考虑到爬取的多媒体文件要保存到本地,因此封装了一个类来专门处理这样的问题,下面看代码: class FileStore:def __init__(self, file_path, read_file_moder,write_file_modewb):"""初始化 FileStore 实例Parameters:- file_…...

pta模拟题——7-34 刮刮彩票

“刮刮彩票”是一款网络游戏里面的一个小游戏。如图所示: 每次游戏玩家会拿到一张彩票,上面会有 9 个数字,分别为数字 1 到数字 9,数字各不重复,并以 33 的“九宫格”形式排布在彩票上。 在游戏开始时能看见一个位置上…...

【补题】 1

蓝桥杯小白赛 ​​​​​​​3.小蓝的金牌梦【算法赛】 - 蓝桥云课 (lanqiao.cn) 数组长度为质数,最大的子数组和 素数 前缀和 #include "bits/stdc.h" using namespace std; #define int long long #define N 100010 int ans[N];int s[N];vector&l…...

IP地址定位技术为网络安全建设提供全新方案

随着互联网的普及和数字化进程的加速,网络安全问题日益引人关注。网络攻击、数据泄露、欺诈行为等安全威胁层出不穷,对个人隐私、企业机密和社会稳定构成严重威胁。在这样的背景下,IP地址定位技术应运而生,为网络安全建设提供了一…...

Redis中HyperLogLog的使用

目录 前言 HyperLogLog 前言 在学习HyperLogLog之前,我们需要先学习两个概念 UV:全称Unique Visitor,也叫独立访客量,是指通过互联网访问、浏览这个网页的自然人。1天内同一个用户多次访问该网站,只记录1次。PV&am…...

新版Spring Security6.2架构 (一)

Spring Security 新版springboot 3.2已经集成Spring Security 6.2,和以前会有一些变化,本文主要针对官网的文档进行一些个人翻译和个人理解,不对地方请指正。 整体架构 Spring Security的Servlet 支持是基于Servelet过滤器,如下…...

名字的漂亮度

给出一个字符串,该字符串仅由小写字母组成,定义这个字符串的“漂亮度”是其所有字母“漂亮度”的总和。 每个字母都有一个“漂亮度”,范围在1到26之间。没有任何两个不同字母拥有相同的“漂亮度”。字母忽略大小写。给出多个字符串&#xff0…...

机器学习基本概念2

资料来源: https://www.youtube.com/watch?vYe018rCVvOo&listPLJV_el3uVTsMhtt7_Y6sgTHGHp1Vb2P2J&index1 https://www.youtube.com/watch?vbHcJCp2Fyxs&listPLJV_el3uVTsMhtt7_Y6sgTHGHp1Vb2P2J&index2 分三步 1、 定义function b和w是需要透…...

Spring Cloud 与微服务学习总结(19)—— Spring Cloud Alibaba 之 Nacos 2.3.0 史上最大更新版本发布

Nacos 一个用于构建云原生应用的动态服务发现、配置管理和服务管理平台,由阿里巴巴开源,致力于发现、配置和管理微服务。说白了,Nacos 就是充当微服务中的的注册中心和配置中心。 Nacos 2.3.0 新特性 1. 反脆弱插件 Nacos 2.2.0 版本开始加入反脆弱插件,从 2.3.0 版本开…...

八、C#笔记

/// <summary> /// 第十三章&#xff1a;创建接口和定义抽象类 /// </summary> namespace Chapter13 { class Program { static void Main(string[] args) { //13.1理解接口 ///13.1.1定义接口 ///…...

利用Node.js和cpolar实现远程访问,无需公网IP和路由器设置的完美解决方案

文章目录 前言1.安装Node.js环境2.创建node.js服务3. 访问node.js 服务4.内网穿透4.1 安装配置cpolar内网穿透4.2 创建隧道映射本地端口 5.固定公网地址 前言 Node.js 是能够在服务器端运行 JavaScript 的开放源代码、跨平台运行环境。Node.js 由 OpenJS Foundation&#xff0…...

C++如何通过调用ffmpeg接口对H264文件进行编码和解码

C可以通过调用FFmpeg的API来对H264文件进行编码和解码。下面是一个简单的例子。 首先需要在代码中包含FFmpeg的头文件&#xff1a; extern "C" { #include <libavcodec/avcodec.h> #include <libavformat/avformat.h> #include <libswscale/swscale…...

使用MetaMask + Ganache搭建本地私有网络并实现合约部署与互动

我使用Remix编写合约&#xff0c;MetaMask钱包工具和Ganache搭建了一个私有网络&#xff0c;并且实现了合约的部署和互动。 在前面的博客中提到了 Remix在线环境及钱包申请 以及 Solidity的基本语法 &#xff0c;没看过的小伙伴可以点击链接查看一下&#xff0c;都是在本专栏下…...

目标检测、目标跟踪、重识别

文章目录 环境前言项目复现特征提取工程下载参考资料 环境 ubuntu 18.04 64位yolov5deepsortfastreid 前言 基于YOLOv5和DeepSort的目标跟踪 介绍过针对行人的检测与跟踪。本文介绍另一个项目&#xff0c;结合 FastReid 来实现行人的检测、跟踪和重识别。作者给出的2个主…...

高防IP防御效果怎么样,和VPN有区别吗

高防IP主要是用于防御网络攻击&#xff0c;可以抵御各种类型的DDoS攻击&#xff0c;隐藏源IP地址&#xff0c;提高网络安全性和用户体验。主要目的是解决外部网络攻击问题&#xff0c;保护网络安全&#xff0c;避免因攻击而导致的业务中断和数据泄露等问题。 而VPN则是一种可以…...

探秘MSSQL存储过程:功能、用法及实战案例

在现代软件开发中&#xff0c;高效地操作数据库是至关重要的。而MSSQL&#xff08;Microsoft SQL Server&#xff09;作为一款强大的关系型数据库管理系统&#xff0c;为我们提供了丰富的功能和工具来处理数据。其中&#xff0c;MSSQL存储过程是一项强大而又常用的功能&#xf…...

测试微信模版消息推送

进入“开发接口管理”--“公众平台测试账号”&#xff0c;无需申请公众账号、可在测试账号中体验并测试微信公众平台所有高级接口。 获取access_token: 自定义模版消息&#xff1a; 关注测试号&#xff1a;扫二维码关注测试号。 发送模版消息&#xff1a; import requests da…...

云原生核心技术 (7/12): K8s 核心概念白话解读(上):Pod 和 Deployment 究竟是什么?

大家好&#xff0c;欢迎来到《云原生核心技术》系列的第七篇&#xff01; 在上一篇&#xff0c;我们成功地使用 Minikube 或 kind 在自己的电脑上搭建起了一个迷你但功能完备的 Kubernetes 集群。现在&#xff0c;我们就像一个拥有了一块崭新数字土地的农场主&#xff0c;是时…...

大话软工笔记—需求分析概述

需求分析&#xff0c;就是要对需求调研收集到的资料信息逐个地进行拆分、研究&#xff0c;从大量的不确定“需求”中确定出哪些需求最终要转换为确定的“功能需求”。 需求分析的作用非常重要&#xff0c;后续设计的依据主要来自于需求分析的成果&#xff0c;包括: 项目的目的…...

遍历 Map 类型集合的方法汇总

1 方法一 先用方法 keySet() 获取集合中的所有键。再通过 gey(key) 方法用对应键获取值 import java.util.HashMap; import java.util.Set;public class Test {public static void main(String[] args) {HashMap hashMap new HashMap();hashMap.put("语文",99);has…...

iPhone密码忘记了办?iPhoneUnlocker,iPhone解锁工具Aiseesoft iPhone Unlocker 高级注册版​分享

平时用 iPhone 的时候&#xff0c;难免会碰到解锁的麻烦事。比如密码忘了、人脸识别 / 指纹识别突然不灵&#xff0c;或者买了二手 iPhone 却被原来的 iCloud 账号锁住&#xff0c;这时候就需要靠谱的解锁工具来帮忙了。Aiseesoft iPhone Unlocker 就是专门解决这些问题的软件&…...

Leetcode 3577. Count the Number of Computer Unlocking Permutations

Leetcode 3577. Count the Number of Computer Unlocking Permutations 1. 解题思路2. 代码实现 题目链接&#xff1a;3577. Count the Number of Computer Unlocking Permutations 1. 解题思路 这一题其实就是一个脑筋急转弯&#xff0c;要想要能够将所有的电脑解锁&#x…...

Swagger和OpenApi的前世今生

Swagger与OpenAPI的关系演进是API标准化进程中的重要篇章&#xff0c;二者共同塑造了现代RESTful API的开发范式。 本期就扒一扒其技术演进的关键节点与核心逻辑&#xff1a; &#x1f504; 一、起源与初创期&#xff1a;Swagger的诞生&#xff08;2010-2014&#xff09; 核心…...

CMake控制VS2022项目文件分组

我们可以通过 CMake 控制源文件的组织结构,使它们在 VS 解决方案资源管理器中以“组”(Filter)的形式进行分类展示。 🎯 目标 通过 CMake 脚本将 .cpp、.h 等源文件分组显示在 Visual Studio 2022 的解决方案资源管理器中。 ✅ 支持的方法汇总(共4种) 方法描述是否推荐…...

AI,如何重构理解、匹配与决策?

AI 时代&#xff0c;我们如何理解消费&#xff1f; 作者&#xff5c;王彬 封面&#xff5c;Unplash 人们通过信息理解世界。 曾几何时&#xff0c;PC 与移动互联网重塑了人们的购物路径&#xff1a;信息变得唾手可得&#xff0c;商品决策变得高度依赖内容。 但 AI 时代的来…...

Linux 内存管理实战精讲:核心原理与面试常考点全解析

Linux 内存管理实战精讲&#xff1a;核心原理与面试常考点全解析 Linux 内核内存管理是系统设计中最复杂但也最核心的模块之一。它不仅支撑着虚拟内存机制、物理内存分配、进程隔离与资源复用&#xff0c;还直接决定系统运行的性能与稳定性。无论你是嵌入式开发者、内核调试工…...