k8s集群部分使用gpu资源的pod出现UnexpectedAdmissionError问题
记录一次排查UnexpectedAdmissionError问题的过程
1. 问题
环境
3master节点+N个GPU节点
kubelet版本:v1.19.4
kubernetes版本:v1.19.4
生产环境K8S集群,莫名其妙的出现大量UnexpectedAdmissionError状态的Pod,导致部分任务执行异常,出现这种情况时,节点的资源是足以支持运行一个GPU Pod的。
报的错误:
Allocate failed due to requested number of devices unavailable for nvidia.com/gpu. Requested: 1, Available: 0, which is unexpected
因为Pod的调度都是指定了spec.nodeName属性的,所以跳过了Pending状态强制进行调度,在资源不足的情况下,就出现了UnexpectedAdmissionError异常。

2.排查过程
确定节点资源是否正常
kubectl describe node <node-name>

通过describe命令可以看到节点的GPU卡是正常的,然后可以去节点上通过nvidia-dcgm,确定GPU设备是否健康
nvidia-dcgm:nvidia官网
在确定节点和GPU设备都是没问题的情况下,那么开始排查出现问题的原因
通过查看日志和源码,可以定位到日志是在manager.go#devicesToAllocate方法的698行出现
// resource=nvidia.com/gpu// Gets Devices in use.devicesInUse := m.allocatedDevices[resource]// Gets Available devices.available := m.healthyDevices[resource].Difference(devicesInUse)if available.Len() < needed {return nil, fmt.Errorf("requested number of devices unavailable for %s. Requested: %d, Available: %d", resource, needed, available.Len())}
也就是,从健康的GPU集合中去除了已使用的GPU后,可用GPU数量少于所需要的数量,但是通过上面的排查,在创建的Pod.cm.resource.limit:nvidia.com/gpu=1的情况下,理论上应该是成功的,这里出现了报错,那么肯定是GPU卡被占用了。
查看kubelet日志,定位具体问题,日志位于/var/log/messages文件,由于kubelet默认日志级别为--v=2,这里需要将其更改为--v=4
查看是否有/etc/kubernetes/kubelet.env文件,如果有,直接更改KUBE_LOG_LEVEL配置
KUBE_LOGTOSTDERR="--logtostderr=true"
KUBE_LOG_LEVEL="--v=4"
如果没有,则修改/usr/lib/systemd/system/kubelet.service.d/10-kubeadm.conf文件
添加Environment
Environment="KUBE_LOGTOSTDERR=--logtostderr=true"
Environment="KUBE_LOG_LEVEL=--v=4"
修改ExecStart命令,在参数位追加$KUBE_LOGTOSTDERR $KUBE_LOG_LEVEL
ExecStart=/usr/bin/kubelet $KUBE_LOGTOSTDERR $KUBE_LOG_LEVEL $KUBELET_KUBECONFIG_ARGS $KUBELET_CONFIG_ARGS $KUBELET_KUBEADM_ARGS $KUBELET_EXTRA_ARGS
修改后需要重启kubelet
systemctl daemon-reload && systemctl restart kubelet
通过grep命令查看关键日志
grep "package-instance-42895-test-4461" messages
从日志中发现,kubelet监听到了两次创建同一个Pod的事件,也就是为一个Job创建了两个Pod
但是Job的配置都是为1
spec:completions: 1backoffLimit: 0parallelism: 1

在这样的配置下,应该只有一次创建Pod的事件才对。
再分别查看两次Pod的资源分配日志
通过less messages命令查看详细的日志过程

从日志中可以看出,第一个Pod分配GPU资源是成功的
而在第二个Pod分配GPU资源时,就提示分配失败

至此问题就定位到了,是因为kubelet本应只创建一个Pod,但是确监听到了多次创建Pod的事件。
从这个情况来看,应当所有的任务都失败才对,但只有小部分任务失败了,继续查看日志

在下面的日志可以看到,kubelet随后就监听到了DELETE事件,删除了一个Pod,虽然在这个日志中删除的是创建失败的Pod
但是多观察几个Pod就会发现,删除完全的随机的,并不是根据状态来的,所以就会出现部分任务失败,但是大部分任务都成功的情况。
从上面的排查过程来看,kubelete、node、gpu device都是没有问题的,那么,继续往上排查scheduler
同样的,scheduler的日志级别默认也是--v=2,这里也需要改成--v=4,修改kube-scheduler.yaml文件
vim /etc/kubernetes/manifests/kube-scheduler.yaml
在command中追加一行--v=4
spec:containers:- command:- kube-scheduler- --authentication-kubeconfig=/etc/kubernetes/scheduler.conf- --authorization-kubeconfig=/etc/kubernetes/scheduler.conf- --bind-address=0.0.0.0- --kubeconfig=/etc/kubernetes/scheduler.conf- --leader-elect=false- --leader-elect-lease-duration=15s- --leader-elect-renew-deadline=10s- --port=0- --v=4
更改文件后保存,等待scheduler自动重建。注意重建后日志会清空,所以需要等待下次调度再次重新进行问题排查
然后通过kubectl logs命令,查看三个scheduler的调度日志
kubectl logs -n kube-system kube-scheduler-master-1| grep package-instance-42895-test-4461
kubectl logs -n kube-system kube-scheduler-master-2| grep package-instance-42895-test-4461
kubectl logs -n kube-system kube-scheduler-master-3| grep package-instance-42895-test-4461
[root@master-1 ~]# kubectl logs -n kube-system kube-scheduler-master-1| grep package-instance-42895-test-4461
I1206 03:23:08.641125 1 eventhandlers.go:225] add event for scheduled pod default/package-instance-42895-test-4461-xxp5t
I1206 03:23:08.641463 1 eventhandlers.go:225] add event for scheduled pod default/package-instance-42895-test-4461-72hdl
I1206 03:23:08.866294 1 eventhandlers.go:283] delete event for scheduled pod default/package-instance-42895-test-4461-72hdl[root@master-1 ~]# kubectl logs -n kube-system kube-scheduler-master-2| grep package-instance-42895-test-4461
I1206 03:23:08.641125 1 eventhandlers.go:225] add event for scheduled pod default/package-instance-42895-test-4461-xxp5t
I1206 03:23:08.641463 1 eventhandlers.go:225] add event for scheduled pod default/package-instance-42895-test-4461-72hdl
I1206 03:23:08.866294 1 eventhandlers.go:283] delete event for scheduled pod default/package-instance-42895-test-4461-72hdl[root@master-1 ~]# kubectl logs -n kube-system kube-scheduler-master-3| grep package-instance-42895-test-4461
从上面的日志可以看到,Pod确实被调度了两次,但是,schduler只是负责调度Pod,并不会控制Pod创建的数量。
而且,理论上,应该只有一个leader级别的schduler处于工作状态,其他两个schduler,应当是处于睡眠状态,不进行工作才对,也就说,其他的schduler不应该监听到调度事件。
虽然问题不在此,但是从这里可以发现schduler的部署是有问题的,查看schduler配置
spec:containers:- command:- kube-scheduler- --authentication-kubeconfig=/etc/kubernetes/scheduler.conf- --authorization-kubeconfig=/etc/kubernetes/scheduler.conf- --bind-address=0.0.0.0- --kubeconfig=/etc/kubernetes/scheduler.conf- --leader-elect=false- --leader-elect-lease-duration=15s- --leader-elect-renew-deadline=10s- --port=0- --v=4
在检查了三个节点的schduler配置后,发现有一个节点的schduler配置中,--leader-elect被设置成了fasle
Kubernetes的调度器可以使用leader选举来确保只有一个实例处于活跃状态,负责决策和分配Pod。一旦调度器的活跃实例失效,其他备用实例可以进行leader选举,确保集群的Pod能够被适当地调度到可用的节点上。
同样,如果多个调度器实例都设置为--leader-elect=false,它们将尝试同时管理Pod的调度决策,可能会导致混乱、资源冲突以及不一致的状态。
在这可以确定是--leader-elect=false导致的出现了多个leader级的schduler,将此配置更改为--leader-elect=true。
等待schudler重建,修复了schudler多leader的问题,但是,Pod重复调度的问题依旧没有解决,查看Pod调度调度流程

从流程图上可以看出,创建Pod的请求,是由Job Controller发出的,在kubernetes中有很多的控制器,例如
Job Controller、Deployment Controller,这些控制器由控制平面进行管理kube-controller-manger。
结合上面schduler的可以得出结论。是在Job Controller中,发出了两次创建Pod的请求,而kube-controller-manger集群跟schduler集群一样,理论上应该只有一个leader级别的处于工作中的状态,其他两个都应该处于休眠状态。但是这里发起了两次创建请求,显然是有一个以上的leader级的kube-controller-manger,通过查看配置文件,问题跟schduler是一样的
YAML文件路径/etc/kubernetes/manifests/kube-controller-manager.yaml
有一个节点的YAML文件中--leader-elect=false,这个配置也被设置为了false,导致的出现了多个ledaer级的控制平面,从而导致Pod被多次创建。
验证方式也是同样的,通过kubectl logs命令,查看三个kube-controller-manager的监听日志,发现有两个控制平面监听到了Create Job事件,从而导致的这次问题。
kubectl logs -n kube-system kube-controller-manager-master-1 |grep package-instance-42895-test-4461
3. 解决方案
通过修改/etc/kubernetes/manifests/kube-scheduler.yaml和/etc/kubernetes/manifests/kube-controller-manager.yaml两个YAML文件中的--leader-elect配置,将其修改为true,即可解决问题。
--leader-elect=false
相关文章:
k8s集群部分使用gpu资源的pod出现UnexpectedAdmissionError问题
记录一次排查UnexpectedAdmissionError问题的过程 1. 问题 环境 3master节点N个GPU节点 kubelet版本:v1.19.4 kubernetes版本:v1.19.4 生产环境K8S集群,莫名其妙的出现大量UnexpectedAdmissionError状态的Pod,导致部分任务执…...
自定义 el-select 和 el-input 样式
文章目录 需求分析el-select 样式el-input 样式el-table 样式 需求 自定义 选择框的下拉框的样式和输入框 分析 el-select 样式 .select_box{// 默认placeholder:deep .el-input__inner::placeholder {font-size: 14px;font-weight: 500;color: #3E534F;}// 默认框状态样式更…...
解决本地centos虚拟机重启,自动变换 ip 地址的问题
修改网卡配置文件 vi /etc/sysconfig/network-scripts/ifcfg-ens33 原配置: TYPE"Ethernet" PROXY_METHOD"none" BROWSER_ONLY"no" BOOTPROTO"dhcp" DEFROUTE"yes" IPV4_FAILURE_FATAL"no" IPV6INI…...
pt36项目短信OAth2.0
5、短信验证码 1、注册容联云账号,登录并查看开发文档(以下分析来自接口文档) 2、开发文档【准备1】:请求URL地址1.示例:https://app.cloopen.com:8883/2013-12-26/Accounts/{}/SMS/TemplateSMS?sig{}ACCOUNT SID# s…...
教师们如何一对一私发成绩?
在传统的教育中,老师通常会通过班级群或家长会等方式发布学生的成绩信息。然而,这种公开的方式可能会让一些学生感到尴尬和不安,因为他们可能不愿意让其他人知道他们的成绩情况。为了解决这个问题,今天我就给老师们推荐一款免费的…...
12.11
1.q,w,e亮led1,2,3; a,s,d灭led1,2,3; main.c #include "uar1.h"#include "led.h"void delay(int ms){int i,j;for(i0;i<ms;i){for…...
Spring JdbcTemplate
一、简介 Spring 框架对 JDBC 进行封装,使用 JdbcTemplate 方便实现对数据库操作。它是 spring 框架中提供的一个对象,是对原始 Jdbc API 对象的简单封装。spring 框架为我们提供了很多的操作模板类。 针对操作关系型数据: jdbcTemplateHibe…...
力扣编程题算法初阶之双指针算法+代码分析
目录 第一题:复写零 第二题:快乐数: 第三题:盛水最多的容器 第四题:有效三角形的个数 第一题:复写零 力扣(LeetCode)官网 - 全球极客挚爱的技术成长平台 思路: 上期…...
实现安装“自由化”!在Windows 11中如何绕过“您尝试安装的应用程序未通过微软验证”
这篇文章描述了如果你不能安装应用程序,而是当你在Windows 11中看到消息“您尝试安装的应用程序未通过微软验证”时该怎么办。完成这些步骤将取消你安装的应用程序必须经过Microsoft验证的要求。 使用设置应用程序 “设置”应用程序提供了绕过此警告消息的最简单方法,以便你…...
【mysql】下一行减去上一行数据、自增序列场景应用
背景 想获取if_yc为1连续账期数据 思路 获取所有if_yc为1的账期数据下一行减去上一行账期,如果为1则为连续,不等于1就为断档获取不等于1的最小账期,就是离当前账期最近连续账期 代码 以下为mysql语法: select acct_month f…...
CLIP在Github上的使用教程
CLIP的github链接:https://github.com/openai/CLIP CLIP Blog,Paper,Model Card,Colab CLIP(对比语言-图像预训练)是一个在各种(图像、文本)对上进行训练的神经网络。可以用自然语…...
入职字节外包一个月,我离职了。。。
有一种打工人的羡慕,叫做“大厂”。 真是年少不知大厂香,错把青春插稻秧。 但是,在深圳有一群比大厂员工更庞大的群体,他们顶着大厂的“名”,做着大厂的工作,还可以享受大厂的伙食,却没有大厂…...
SpringBoot的web开发
与其明天开始,不如现在行动! 文章目录 web开发1 web场景1.1 自动配置1.2 默认效果 💎总结 web开发 SpringBoot的web开发能力是由SpringMVC提供的 1 web场景 1.1 自动配置 整合web场景 <dependency><groupId>org.springframewo…...
传染病传播速度
题干 R0值是基本传染数的简称,指的是在没有采取任何干预措施的情况下,平均每位感染者在传染期内使易感者个体致病的数量。数字越大说明传播能力越强,控制难度越大。一个人传染的人的数量可以用幂运算来计算。假设奥密克戎的R0为10࿰…...
前端打包环境配置步骤
获取node安装包并解压 获取node安装包 wget https://npmmirror.com/mirrors/node/v16.14.0/node-v16.14.0-linux-x64.tar.xz 解压 tar -xvf node-v16.14.0-linux-x64.tar.xz 创建软链接 sudo ln -s 此文件夹的绝对路径/bin/node /usr/local/bin/node,具体执行如下…...
css的4种引入方式--内联样式(标签内style)、内部样式表(<style>)、外部样式表(<link>、@import)
1.内联样式(Inline Styles):可以直接在HTML元素的style属性中定义CSS样式。 例如: <p style"color: red; font-size: 16px;">这是一段红色的文本</p>内联样式适用于对单个元素应用特定的样式,…...
GPT-4 变懒了?官方回复
你是否注意到,最近使用 ChatGPT 的时候,当你向它提出一些问题,却得到的回应似乎变得简短而敷衍了?对于这一现象,ChatGPT 官方给出了回应。 译文:我们听到了你们所有关于 GPT4 变得更懒的反馈!我…...
编译器和 IR:LLVM IR、SPIR-V 和 MLIR
编译器通常是各种开发工具链中的关键组件,可提高开发人员的工作效率。编译器通常用作独立的黑匣子,它使用高级源程序并生成语义上等效的低级源程序。不过,它仍然是内部结构倾向的;内部之间流动的内容就称为中间表示 (IR࿰…...
蓝牙物联网对接技术难点有哪些?
#物联网# 蓝牙物联网对接技术难点主要包括以下几个方面: 1、设备兼容性:蓝牙技术有多种版本和规格,如蓝牙4.0、蓝牙5.0等,不同版本之间的兼容性可能存在问题。同时,不同厂商生产的蓝牙设备也可能存在兼容性问题。 2、…...
漫谈Uniapp App热更新包-Jenkins CI/CD打包工具链的搭建
零、写在前面 HBuilderX是DCloud旗下的IDE产品,目前只提供了Windows和Mac版本使用。本项目组在开发阶段经常需要向测试环境提交热更新包,使用Jenkins进行CD是非常有必要的一步。尽管HBuilderX提供了CLI,但Jenkins服务通常都是搭建在Linux环境…...
网络编程(Modbus进阶)
思维导图 Modbus RTU(先学一点理论) 概念 Modbus RTU 是工业自动化领域 最广泛应用的串行通信协议,由 Modicon 公司(现施耐德电气)于 1979 年推出。它以 高效率、强健性、易实现的特点成为工业控制系统的通信标准。 包…...
理解 MCP 工作流:使用 Ollama 和 LangChain 构建本地 MCP 客户端
🌟 什么是 MCP? 模型控制协议 (MCP) 是一种创新的协议,旨在无缝连接 AI 模型与应用程序。 MCP 是一个开源协议,它标准化了我们的 LLM 应用程序连接所需工具和数据源并与之协作的方式。 可以把它想象成你的 AI 模型 和想要使用它…...
YSYX学习记录(八)
C语言,练习0: 先创建一个文件夹,我用的是物理机: 安装build-essential 练习1: 我注释掉了 #include <stdio.h> 出现下面错误 在你的文本编辑器中打开ex1文件,随机修改或删除一部分,之后…...
论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(一)
宇树机器人多姿态起立控制强化学习框架论文解析 论文解读:交大&港大&上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(一) 论文解读:交大&港大&上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化…...
华为云Flexus+DeepSeek征文|DeepSeek-V3/R1 商用服务开通全流程与本地部署搭建
华为云FlexusDeepSeek征文|DeepSeek-V3/R1 商用服务开通全流程与本地部署搭建 前言 如今大模型其性能出色,华为云 ModelArts Studio_MaaS大模型即服务平台华为云内置了大模型,能助力我们轻松驾驭 DeepSeek-V3/R1,本文中将分享如何…...
浅谈不同二分算法的查找情况
二分算法原理比较简单,但是实际的算法模板却有很多,这一切都源于二分查找问题中的复杂情况和二分算法的边界处理,以下是博主对一些二分算法查找的情况分析。 需要说明的是,以下二分算法都是基于有序序列为升序有序的情况…...
初学 pytest 记录
安装 pip install pytest用例可以是函数也可以是类中的方法 def test_func():print()class TestAdd: # def __init__(self): 在 pytest 中不可以使用__init__方法 # self.cc 12345 pytest.mark.api def test_str(self):res add(1, 2)assert res 12def test_int(self):r…...
【Java学习笔记】BigInteger 和 BigDecimal 类
BigInteger 和 BigDecimal 类 二者共有的常见方法 方法功能add加subtract减multiply乘divide除 注意点:传参类型必须是类对象 一、BigInteger 1. 作用:适合保存比较大的整型数 2. 使用说明 创建BigInteger对象 传入字符串 3. 代码示例 import j…...
技术栈RabbitMq的介绍和使用
目录 1. 什么是消息队列?2. 消息队列的优点3. RabbitMQ 消息队列概述4. RabbitMQ 安装5. Exchange 四种类型5.1 direct 精准匹配5.2 fanout 广播5.3 topic 正则匹配 6. RabbitMQ 队列模式6.1 简单队列模式6.2 工作队列模式6.3 发布/订阅模式6.4 路由模式6.5 主题模式…...
MySQL JOIN 表过多的优化思路
当 MySQL 查询涉及大量表 JOIN 时,性能会显著下降。以下是优化思路和简易实现方法: 一、核心优化思路 减少 JOIN 数量 数据冗余:添加必要的冗余字段(如订单表直接存储用户名)合并表:将频繁关联的小表合并成…...
