当前位置: 首页 > news >正文

视频中自监督学习:「我的世界」下指令理解与跟随

本文介绍了北京大学人工智能研究院梁一韬助理教授所带领的 CraftJarvis 团队在「我的世界」环境下探索通用智能体设计的新进展,题为“GROOT: Learning to Follow Instructions by Watching Gameplay Videos”。

GROOT.png
GROOT

该研究的核心目标是探索能否摆脱文本数据的标注以及与环境的在线交互,而是仅通过观看游戏视频的方式来教会智能体理解世界、遵循指令,进而在开放世界下解决无穷的任务。考虑到视频数据广泛分布于互联网,而高质量的“文本-视频”数据对则难以获得,因此团队创新地提出使用一段“参考视频”作为指令的描述形式,并设计一套简洁的架构和自监督训练方法来联合学习指令空间和指令跟随策略。通过在本文提出的 Minecraft SkillForge 基准上进行细致的评测,该方法超过了目前现有的基线方法,并拉近了与人类玩家之间的差距。这对于复杂环境下通用智能体的设计有重要意义。

本文的第一作者是由梁一韬助理教授指导的博士生蔡少斐,通讯作者为梁一韬。论文的作者还包括北京大学的张博为、王子豪,UCLA 的刘安吉以及北京通用人工智能研究院的马晓健研究员。

image.png

 

论文题目: GROOT: Learning to Follow Instructions by Watching Gameplay Videos

论文链接: https://arxiv.org/abs/2310.08235 

项目网站:GROOT: Learning to Follow Instructions by Watching Gameplay Videos

01. 研究背景

在开放世界下开发类人级别的具身智能体以解决开放式任务一直是人工智能领域长期以来追求的目标。随着 ChatGPT 的流行,近年来涌现了一批利用大语言模型(LLM)的规划推理能力来解决「我的世界」中复杂长期任务的尝试,如 DEPS、Voyager、GITM 等工作。然而,与理想的通用智能体相比,这些基于 LLM 的工作主要强调发掘语言模型的潜力而忽略了提升底层控制器(low-level controller)的重要性。事实上,底层控制器负责将 LLM 规划出来的 plan 映射到具体动作空间(键盘与鼠标操作),并与环境直接进行交互。因此,其掌握的技能库中技能的数量和质量决定了智能体能力上限。该团队的此项研究旨在构建具备指令理解能力的基础决策大模型。通过将技能库从有限推广至无限,实现了由封闭式指令向开放式指令理解的迈进。

02. 研究动机

2.1 自监督预训练范式促进大规模任务学习

自监督预训练范式已经相继在自然语言处理(NLP)和计算机视觉(CV)领域展现出了极强的泛化能力,大有统一深度学习的趋势。然而,在强化学习(RL)和决策控制领域的相关研究则相对滞后。本文作者认为预训练的学习范式对于构建决策大模型来说至关重要。考虑到任务的多样性,为每个任务单独定义一套奖励函数并让智能体在与环境交互的方式中学习是非常昂贵且不安全的。因此,利用网上的海量视频数据对智能体进行自监督预训练使其大规模“领悟”技能的道路则非常有前景。

2.2 “视频”做指令表达能力强,数据易收集

为了使预训练出来智能体能够理解人类的指令并执行相应的任务,必须对指令空间的形式进行定义。目前主流的指令形式主要包括「任务指示器」、「未来的结果」(又分为「未来的状态」、「预期的累计奖励」等)、「自然语言」。本文作者认为,尽管在这些指令形式下智能体容易使用“后见经验重放”之类的技巧学习,然而指令的表达能力却十分有限。以「未来的状态」举例,一张房屋的照片并不能告诉智能体房子是如何被建造出来的,因为其缺乏细致的过程性描述。此外,这种指令也存在很强的歧义性,例如一张站在房屋前的图片并不能让智能体区分是要构建这样一座房屋还是找到这样一座房屋。尽管对于过程描述足够细致的自然语言指令可以规避上述所说的问题,然而互联网上并不存在如此多高质量的“视频-文本”数据对可供训练。

观察到主流指令形式的局限性之后,研究团队旨在找到指令的表达能力与智能体学习的成本之间的平衡。作者发现视频形式的指令则可以同时兼顾这两个要求。一方面,一段“参考”视频可以描述完成任务所需的所有细节信息,具备极强的表达能力;另一方面,视频模态数据大规模分布在互联网上,因此训练数据十分易于收集。

03. 研究方法

image.png
GROOT 基于编码器-解码器的架构设计

遵循上述设计原则,研究团队采用了流行的编码器-解码器架构来实现整个模型,并命名为 GROOT。具体来说,研究团队采用了非因果 Transformer 来实现视频编码器,用于提取视频中蕴含的语义信息;采用了一个因果 Transformer 作为解码器(即策略)用于遵照指令的语义信息在环境中做出相应的行为。在训练过程中,输入到编码器的视频和送到解码器中状态序列是完全一致的,模型在 KL 散度的约束下使用行为克隆进行自我模仿。在推理过程中,将输入到编码器中的视频换成任意一段描述某个任务执行过程的参考视频,智能体便可与环境进行交互从而完成相应的任务。

04. 评测基准

「我的世界」 环境具备极高的自由度,为了全面评估 GROOT 在解决复杂多样化任务上的能力。研究团队提出了一组新的评测基准「Minecraft SkillForge」。该基准包含了 「我的世界」 环境中的 30 个基础任务,涵盖「资源收集」、「生存维持」、「物品制作」、「自由探索」、「工具使用」和「结构建造」6 大类别。以下展示了「结构建造」、「对敌战斗」和「资源收集」三大类任务。

image.png
结构建造
image.png
生存维持
image.png
资源收集
image.png
工具使用

 

image.png
物品制作
image.png
自由探索

「挖三填一」是 「我的世界」 中安全度过黑夜的有效方法,它描述了构建一个简易庇护所所需的步骤:垂直向下挖掘 3 个泥土,抬头将 1 个泥土放置在上方做成封闭空间。

「蜘蛛进行搏斗」指玩家需要在保证生存的情况下使用钻石剑击杀尽可能多的蜘蛛。

「收集水草」任务指的是玩家需要跳进海中,潜泳游到海底破坏水草方块。

该评测基准既包含一些常见的任务(如收集木头、羊毛、草),也包含一些十分罕见的任务(如挖三填一、建造雪傀儡、切割石块)。因此该基准可以充分反应模型的泛化能力,对未来 「我的世界」 下多任务智能体的研究也有较大的意义。

05. 实验结果

5.1 天梯系统与人工评测

由于任务的多样性,并不存在一种统一的指标来评估所有任务。因此,研究团队使用 Elo Rating 系统结合人工比较的方式评估了 GROOT 与现有基线在「Minecraft SkillForge」基准上的性能差异。如图所示,可以发现 GROOT (1829 分)显著超越了目前所有的基线方法(1679 分),进一步缩小了与人类玩家(2034 分)的差异。如中间图所示,在一些不常见的任务(如「架构建造」和「工具使用」)上,相比之前的最优方法 STEVE-1,GROOT 获得了很高的对战胜率(>83%)。

image.png
天梯系统与人工评测

5.2 程序性任务评测结果

右图展示了 GROOT 和基线方法在 9 种代表性任务上的成功率对比。GROOT 除了在所有任务上都取得领先优势之外,也是唯一一个在「装备附魔」、「挖三填一」、「建造雪傀儡」任务上取得非零成功率的智能体。

5.3 指令空间 t-SNE 可视化结果

image.png
指令空间 t-SNE 可视化

为了直观了解指令空间的学习情况,研究团队额外展示了训练前后指令空间在 7 种类别任务视频上的编码效果。可以发现,经过自监督训练之后,指令空间的表达能力得到了极大的提升。在没有任何语义标签辅助下,仅通过自监督预训练就可以较好地提取视频中存在的语义信息。

5.4 组合多个指令解决复杂长期任务

image.png
钻石挑战

「我的世界」 中存在很多任务需要串行执行多个指令才可以解决,其中最经典的就是「钻石挑战」。钻石稀疏地分布于 「我的世界」 地下 7-12 层的位置。为了方便展现 GROOT 在解决「钻石挑战」上的表现,作者通过给智能体一把铁镐简化了钻石挑战任务,即省略了制作铁镐的过程。现在智能体只需向下挖掘到指定层数,再水平挖掘(可能需要很久)挖到💎即可。作者初始化给智能体的指令是一段向下挖掘的视频,并实时检测智能体高度,当高度到达 12 时,将给智能体的指令切换为一段描述水平挖掘的视频。研究团队发现 GROOT 可以以 16% 的较高成功率挖到💎。而相较而言,以「未来的结果」作为指令形式的STEVE-1 则无法获得钻石。作者推测,这可能是由于「未来的结果」无法表达水平挖掘这一概念,因此容易掉到基岩层并卡住,从而导致任务失败。

06. 结论与展望

本文提出了一种通过观看游戏视频来学习遵循指令的预训练范式。作者认为视频指令是一个很好的目标空间形式,它不仅表达了开放式任务,还可以通过自我监督进行训练。基于此,研究团队在 「我的世界」 中构建了一个名为 GROOT 的编码器-解码器 Transformer 架构智能体。无需依赖任何标注数据,GROOT 表现出非凡的指令跟随能力并霸榜 Minecraft SkillForge 基准。此外,作者还展示了它在「钻石挑战」任务中作为下游控制器的潜力。研究团队相信这种架构和训练范式具有很强的应用前景,并希望将其应用于更复杂的开放世界环境。

07. 相关工作

CraftJarvis 团队长期关注于在开放世界下构建自主智能体。除了构建指令跟随智能体 GROOT 完成开放世界下的短期任务,团队还使用预训练的大语言模型作为 Planner 来增强智能体完成长期任务的能力。

7.1 DEPS

DEPS 是第一个使用大语言模型在开放世界 「我的世界」 上进行任务规划和任务执行的智能体。DEPS 基于大语言模型设计了一个包括“描述、解释、规划并选择”的流程,通过整合计划执行过程的描述并在规划阶段遇到失败时大语言模型提供的自我解释反馈,从而在初步 LLM 生成的计划失败时更好的修正错误并重新规划。此外,它还包括一个目标选择器,这是一个可学习的模块,根据预估完成步骤来对候选子目标进行排序,从而提高语言计划在开放世界下的可执行性。DEPS 可以在「我的世界」环境中零样本的实现长序列任务,例如在生存模式下从头开始获得钻石。

Describe, Explain, Plan and Select: Interactive Planning with Large Language Models Enables Open-World Multi-Task Agents 
arXiv: https://arxiv.org/pdf/2302.01560.pdf 

Code:https://github.com/CraftJarvis/MC-Planner 

该文章被收录于NeurIPS 2023,并在ICML 2023的TEACH Workshop上被评选为最佳论文。

image.png
DEPS

7.2 JARVIS-1

JARVIS-1 是一个开放世界智能体,基于预训练的多模态语言模型,能够感知多模态输入(视觉观察和人类指令),生成复杂计划,并在「我的世界」中执行具身控制。JARVIS-1 还配备了一个多模态记忆,它利用预训练知识和实际游戏生存经验来提高规划能力。JARVIS-1 是现有「我的世界」中最通用的智能体,能够使用与人类一致的控制和观察空间完成200多个不同任务,从短期任务(例如“砍树”)到长期任务(例如“获得一把钻石镐”)。在经典的长期任务“获得钻石镐”中,JARVIS-1 的成功率为当前最先进智能体的5倍,并能成功完成更长时间跨度和更具挑战性的任务。

JARVIS-1: Open-World Multi-task Agents with Memory-Augmented Multimodal Language Models 
arXiv: https://arxiv.org/pdf/2311.05997.pdf 

Project: JARVIS-1: Open-world Multi-task Agents with Memory-Augmented Multimodal Language Models

image.png
Jarvis-1

08. 本文作者

蔡少斐,北京大学人工智能研究院博士生,CraftJarvis 研究团队成员之一,导师是梁一韬教授。他的研究兴趣主要包括决策大模型、语言大模型以及游戏智能。他已在 CVPR 、NeurIPS 等人工智能顶会上发表过多篇论文,并专注于开放世界下智能体决策控制研究。担任 ICML、NeurIPS 、 ICLR 等国际学术会议审稿人。

个人主页:https://phython96.github.io

王子豪,北京大学人工智能研究院博士生,CraftJarvis 研究团队成员之一,导师为梁一韬教授。曾获国家奖学金、北京市优秀毕业生等荣誉。主要研究方向为开放世界下多任务智能体的构建,尤其关心基于基础模型的智能体的泛化能力。近年来在CVPR、NeurIPS等人工智能顶会上发表多篇论文,曾获ICML研讨会最佳论文奖。担任ICML、NeurIPS、ICLR等多个国际机器学习会议审稿人。

个人主页: https://zhwang4ai.github.io

关于TechBeat人工智能社区

TechBeat(www.techbeat.net)隶属于将门创投,是一个荟聚全球华人AI精英的成长社区。

我们希望为AI人才打造更专业的服务和体验,加速并陪伴其学习成长。

期待这里可以成为你学习AI前沿知识的高地,分享自己最新工作的沃土,在AI进阶之路上的升级打怪的根据地!

更多详细介绍>>TechBeat,一个荟聚全球华人AI精英的学习成长社区 

相关文章:

视频中自监督学习:「我的世界」下指令理解与跟随

本文介绍了北京大学人工智能研究院梁一韬助理教授所带领的 CraftJarvis 团队在「我的世界」环境下探索通用智能体设计的新进展,题为“GROOT: Learning to Follow Instructions by Watching Gameplay Videos”。 ​ GROOT 该研究的核心目标是探索能否摆脱文本数据的标…...

Spring基于xml半注解开发

目录 Component的使用 依赖注解的使用 非自定义Bean的注解开发 Component的使用 基本Bean注解&#xff0c;主要是使用注解的方式替代原有的xml的<bean>标签及其标签属性的配置&#xff0c;使用Component注解替代<bean>标签中的id以及class属性&#xff0c;而对…...

功能测试,接口测试,自动化测试,压力测试,性能测试,渗透测试,安全测试,具体是干嘛的?

软件测试是一个广义的概念&#xff0c;他包括了多领域的测试内容&#xff0c;比如&#xff0c;很多新手可能都听说&#xff1a;功能测试&#xff0c;接口测试&#xff0c;自动化测试&#xff0c;压力测试&#xff0c;性能测试&#xff0c;渗透测试&#xff0c;安全测试等&#…...

oracle 下载java之前版本

登录oracle官网&#xff1a;Oracle | Cloud Applications and Cloud Platform 点击resource 进入该页面 点击这个 出现之前版本...

LLM之Agent(四)| AgentGPT:一个在浏览器运行的Agent

AgentGPT是一个自主人工智能Agent平台&#xff0c;用户只需要为Agent指定一个名称和目标&#xff0c;就可以在浏览器中链接大型语言模型&#xff08;如GPT-4&#xff09;来创建和部署Agent平台。 PS&#xff1a;目前agentGPT仅支持chatgpt模型&#xff0c;暂时不支持本地llm模…...

AGM离线下载器使用说明

AGM专用离线下载器示意图&#xff1a; 供电方式&#xff1a; 通过 USB 接口给下载器供电&#xff0c;跳线 JP 断开。如果客户 PCB 的 JTAG 口不能提供 3.3V 电源&#xff0c;或仅需烧写下载器&#xff0c;尚未连接用户 PCB 时&#xff0c;采用此种方式供电。 或者&#xff1a…...

viple与物理机器人(一):线控模拟

为了检测viple程序与物理机器人是否能顺利连接上 如果能顺利连接上&#xff0c;那么&#xff0c;可以通过内建事件从而控制物理机器人的前进、后退、左转、右转以及暂停。 如果不能连接上&#xff0c;首先&#xff0c;程序无法控制物理机器人&#xff0c;其次&#xff0c;当vip…...

Appium 并行测试多个设备

一、前置说明 在自动化测试中&#xff0c;经常需要验证多台设备的兼容性&#xff0c;Appium可以用同一套测试运例并行测试多个设备&#xff0c;以达到验证兼容性的目的。 解决思路&#xff1a; 查找已连接的所有设备&#xff1b;为每台设备启动相应的Appium Server&#xff1b…...

高防IP是什么? 防护CC 对抗DDOS

什么是DDoS高防IP&#xff1f; DDoS&#xff08;分布式拒绝服务&#xff09;攻击是指攻击者通过利用大量恶意流量向目标服务器发送请求&#xff0c;导致目标服务器无法正常处理合法用户的请求。DDoS高防IP是一种通过技术手段来应对DDoS攻击的解决方案。它能够过滤掉恶意流量&a…...

使用消息队列遇到的问题—kafka

目录 1 分区2 消费者3 Kafka 如何保证消息的消费顺序&#xff1f;3.1 方案一3.2 方案二 4 消息积压 在项目中使用kafka作为消息队列&#xff0c;核心工作是创建生产者—包装数据&#xff1b;创建消费者----包装数据。 欠缺一些思考&#xff0c;特此梳理项目中使用kafka遇到的一…...

Linux系统---基于Pipe实现一个简单Client-Server system

顾得泉&#xff1a;个人主页 个人专栏&#xff1a;《Linux操作系统》 《C/C》 《LeedCode刷题》 键盘敲烂&#xff0c;年薪百万&#xff01; 一、题目要求 Server是一个服务器进程&#xff0c;只能进行整数平方运算。Client要计算一个整数的平方的平方的平方&#xff0c;即…...

CentOS7安装最新版本git

CentOS7上的git是1.8.3.1&#xff0c;比较老&#xff0c;使用体验不好。下载源码来升级一下。 sudo yum -y install dh-autoreconf curl-devel expat-devel gettext-devel openssl-devel perl-devel zlib-devel sudo yum -y iinstall asciidoc xmlto docbook2X sudo yum -y in…...

Java项目-瑞吉外卖Day3

填充公共字段&#xff1a; 目的&#xff1a;由于某些属性&#xff0c;例如createdTime这些需要填充的字段会在多个地方出现&#xff0c;所以考虑使用公共字段自动填充的办法减少重复代码。 在对应属性上加入TableField注解。通过fill字段表明策略&#xff0c;是插入/更新的时候…...

Java集合框架之争:ArrayList vs LinkedList

友情提示&#xff1a;LinkedList其实就是数据结构中的双向链表&#xff0c;没学过的话可以学一下有关链表的知识&#xff0c;至于LinkedList中的源码其实大多数据结构的基本链表操作实现的&#xff0c;这里我就不多做说明了&#xff0c;有兴趣的话可自行看源码 由于ArrayList由…...

一个用于处理嵌入式系统中的 NAND Flash 存储器的工具 `kobs-ng`

一个用于处理嵌入式系统中的 NAND Flash 存储器的工具 kobs-ng kobs-ng 是一个用于处理嵌入式系统中的 NAND Flash 存储器的工具。它是 U-Boot&#xff08;开源引导加载程序&#xff09;中的一个子项目&#xff0c;用于擦除、写入和读取 NAND Flash 设备上的数据。 以下是 kob…...

【小白专用】MySQL查询数据库所有表名及表结构其注释

一、先了解下INFORMATION_SCHEMA 1、在MySQL中&#xff0c;把INFORMATION_SCHEMA看作是一个数据库&#xff0c;确切说是信息数据库。其中保存着关于MySQL服务器所维护的所有其他数据库的信息。如数据库名&#xff0c;数据库的表&#xff0c;表栏的数据类型与访问权 限等。在INF…...

数据库中常用的锁

目录 1、数据库中常用的锁类型 2、常见的数据库 3、以MySQL为例 3.1 MySQL的事务 3.2 MySQL事务的四大特性 1. 原子性&#xff08;Atomicity&#xff09; 2. 一致性&#xff08;Consistency&#xff09; 3. 隔离性&#xff08;Isolation&#xff09; ⭐mysql中的事务隔…...

关于对向量检索研究的一些学习资料整理

官方学习资料 主要是的学习资料是&#xff0c; 官方文档 和官方博客。相关文章还是挺多 挺不错的 他们更新也比较及时。有最新的东西 都会更新出来。es scdn官方博客 这里简单列一些&#xff0c;还有一些其他的&#xff0c;大家自己感兴趣去看。 什么是向量数据库 Elasticse…...

软件开发流程分析

软件开发流程分析 相关概念1 原型设计2 产品设计3 交互设计4 代码实现详细步骤 相关概念 前端&#xff1a;自研API&#xff0c;调用第三放API 后端&#xff1a;自研API&#xff0c;第三方API 数据库&#xff1a;Mysql&#xff0c;数据采集&#xff0c;数据迁移 服务器&#xf…...

017 OpenCV 向量机SVM

目录 一、环境 二、SVM原理 三、完整代码 一、环境 本文使用环境为&#xff1a; Windows10Python 3.9.17opencv-python 4.8.0.74 二、SVM原理 OpenCV中的向量机&#xff08;SVM&#xff09;是一种监督学习算法&#xff0c;用于分类和回归分析。它通过找到一个最优的超平…...

Qt练习题

1.使用手动连接&#xff0c;将登录框中的取消按钮使用qt4版本的连接到自定义的槽函数中&#xff0c;在自定义的槽函数中调用关闭函数 将登录按钮使用qt5版本的连接到自定义的槽函数中&#xff0c;在槽函数中判断ui界面上输入的账号是否为"admin"&#xff0c;密码是否…...

文本转图像 学习笔记

VQGAN (Vector Quantized Generative Adversarial Network) 是一种基于 GAN 的生成模型&#xff0c;可以将图像或文本转换为高质量的图像。 VQ &#xff08;Vector Quantization&#xff09;是一种数据压缩技术&#xff0c;是指将连续数据表示为离散化的向量。输入的图像或文本…...

开源CDN软件GoEdge —— 筑梦之路

官方网站&#xff1a;GoEdge CDN - 制作自己的CDN - GoEdge CDN | 自建CDN GoEdge是一款管理分布式CDN边缘节点的开源工具软件&#xff0c;目的是让用户轻松地、低成本地创建CDN/WAF等应用。 特性 免费 - 开源、免费、自由、开放 简单 - 架构简单清晰&#xff0c;安装简单&a…...

基于SpringBoot+Vue会员制医疗预约服务管理信息系统(Java毕业设计)

点击咨询源码 大家好&#xff0c;我是DeBug&#xff0c;很高兴你能来阅读&#xff01;作为一名热爱编程的程序员&#xff0c;我希望通过这些教学笔记与大家分享我的编程经验和知识。在这里&#xff0c;我将会结合实际项目经验&#xff0c;分享编程技巧、最佳实践以及解决问题的…...

【Linux | 编程实践】防火墙 (网络无法访问)解决方案 Vim常用快捷键命令

&#x1f935;‍♂️ 个人主页: AI_magician &#x1f4e1;主页地址&#xff1a; 作者简介&#xff1a;CSDN内容合伙人&#xff0c;全栈领域优质创作者。 &#x1f468;‍&#x1f4bb;景愿&#xff1a;旨在于能和更多的热爱计算机的伙伴一起成长&#xff01;&#xff01;&…...

仅 CSS 阅读进度条

为了构建一个阅读进度条&#xff0c;即显示用户向下滚动时阅读文章的进度&#xff0c;很难不考虑 JavaScript。但是&#xff0c;事实证明&#xff0c;您也可以使用纯 CSS 构建阅读进度条。 从本质上讲&#xff0c;一个名为 animation-timeline 的新实验性 CSS 属性可以让你指定…...

深度剖析中国居民消费价格指数CPI数据可视化案例-Python可视化技术实现(附完整源码)【数据可视化项目案例-16】

🎉🎊🎉 你的技术旅程将在这里启航! 🚀🚀 本专栏包括所有的可视化技术学习,感兴趣可以到本专栏页面,查阅可视化宝典可快速了解本专栏。订阅专栏用户可以在每篇文章底部下载对应案例源码以供大家深入的学习研究。 🎓 每一个案例都会提供完整代码和详细的讲解,不论…...

SpringBoot——嵌入式 Servlet容器

一、如何定制和修改Servlet容器的相关配置 前言&#xff1a; SpringBoot在Web环境下&#xff0c;默认使用的是Tomact作为嵌入式的Servlet容器&#xff1b; 【1】修改和server相关的配置&#xff08;ServerProperties实现了EmbeddedServletContainerCustomizer&#xff09;例如…...

王炸升级!PartyRock 10分钟构建 AI 应用

前言 一年一度的亚马逊云科技的 re:Invent 可谓是全球云计算、科技圈的狂欢&#xff0c;每次都能带来一些最前沿的方向标&#xff0c;这次也不例外。在看完一些 keynote 和介绍之后&#xff0c;我也去亲自体验了一些最近发布的内容。其中让我感受最深刻的无疑是 PartyRock 了。…...

文件管理和操作工具Path Finder mac功能介绍

Path Finder mac是一款Mac平台上的文件管理和操作工具&#xff0c;提供了比Finder更丰富的功能和更直观的用户界面。它可以帮助用户更高效地浏览、复制、移动、删除和管理文件&#xff0c;以及进行各种高级操作。 Path Finder mac软件功能 - 文件浏览&#xff1a;可以快速浏览文…...