HNU计算机视觉作业一
前言
选修的是蔡mj老师的计算机视觉,上课还是不错的,但是OpenCV可能需要自己学才能完整把作业写出来。由于没有认真学,这门课最后混了80多分,所以下面作业解题过程均为自己写的,并不是标准答案,仅供参考
任务1
修改test.py的task_one()函数,对task1.jpg进行去噪处理,处理结果保存为task1_proc.jpg
提示:请观察分析task1.jpg的噪声特点,并选择合适的处理方法

def task_one():img = cv2.imread('task1.jpg')#---------your code-----------------#median = cv2.medianBlur(img, 3)#---------draw figures--------------#plt.imshow(cv2.cvtColor(median, cv2.COLOR_BGR2RGB)),plt.title('task1 output')plt.show()#---------save figures--------------#cv2.imwrite("task1_proc.jpg", median)
效果如下:

任务2
修改test.py的task_two()函数,对task2.jpg进行去噪处理,处理结果保存为task2_proc.jpg
提示:请观察分析task2.jpg的噪声特点,并选择合适的处理方法

def task_two():img = cv2.imread('task2.jpg')#---------your code-----------------#blur = cv2.bilateralFilter(img,5,50,50)#---------draw figures--------------##plt.imshow(cv2.cvtColor(blur, cv2.COLOR_BGR2RGB)),plt.title('task2 output')#plt.show()#---------save figures--------------#cv2.imwrite("task2_proc.jpg", blur)
效果如下:

任务3
修改test.py的task_three()函数,对task3.jpg进行去噪处理,处理结果保存为task3_proc.jpg
提示:task3.jpg中的噪声为y轴方向的周期噪声,周期为图像高度(height)的1/10

这个不会做,弄了半天
def task_three():#img = cv2.imread('task3.jpg',1)#---------your code-----------------## 读取图像img = cv2.imread('task3.jpg')# 分离RGB通道b, g, r = cv2.split(img)# 对每个通道进行傅里叶变换fb = np.fft.fft2(b)fg = np.fft.fft2(g)fr = np.fft.fft2(r)# 将频域中的原点移动到图像中心fb_shift = np.fft.fftshift(fb)fg_shift = np.fft.fftshift(fg)fr_shift = np.fft.fftshift(fr)# 获取频谱图像magnitude_spectrum_b = 20 * np.log(np.abs(fb_shift))magnitude_spectrum_g = 20 * np.log(np.abs(fg_shift))magnitude_spectrum_r = 20 * np.log(np.abs(fr_shift))# 获取图像高度height, width = img.shape[:2]# 计算周期噪声的频率成分dft_height = np.ceil(height / 10)cy = np.arange(dft_height, height, dft_height)cx = np.arange(width)# 将周期噪声的频率成分设置为0for y in cy:fb_shift[int(y) - 1:int(y) + 1, :] = 0fg_shift[int(y) - 1:int(y) + 1, :] = 0fr_shift[int(y) - 1:int(y) + 1, :] = 0# 进行反傅里叶变换,得到去噪后的图像ib = np.fft.ifft2(np.fft.ifftshift(fb_shift))ig = np.fft.ifft2(np.fft.ifftshift(fg_shift))ir = np.fft.ifft2(np.fft.ifftshift(fr_shift))# 将每个通道的结果合并为一张去噪后的彩色图像denoised_img = cv2.merge((ib.real, ig.real, ir.real))#---------draw figures--------------##plt.imshow(cv2.cvtColor(result, cv2.COLOR_BGR2RGB)),plt.title('task3 output')#plt.show()#---------save figures--------------#cv2.imwrite("task3_proc.jpg", denoised_img)
效果和原图没啥区别。。。

源代码:
# -*- coding: utf-8 -*-
"""
Created on Fri Mar 31 14:51:59 2023@author: cai-mj
"""import numpy as np
import cv2
from matplotlib import pyplot as pltdef task_one():img = cv2.imread('task1.jpg')#---------your code-----------------#median = cv2.medianBlur(img, 3)#---------draw figures--------------#plt.imshow(cv2.cvtColor(median, cv2.COLOR_BGR2RGB)),plt.title('task1 output')plt.show()#---------save figures--------------#cv2.imwrite("task1_proc.jpg", median)def task_two():img = cv2.imread('task2.jpg')#---------your code-----------------#blur = cv2.bilateralFilter(img,5,50,50)#---------draw figures--------------##plt.imshow(cv2.cvtColor(blur, cv2.COLOR_BGR2RGB)),plt.title('task2 output')#plt.show()#---------save figures--------------#cv2.imwrite("task2_proc.jpg", blur)def task_three():#img = cv2.imread('task3.jpg',1)#---------your code-----------------## 读取图像img = cv2.imread('task3.jpg')# 分离RGB通道b, g, r = cv2.split(img)# 对每个通道进行傅里叶变换fb = np.fft.fft2(b)fg = np.fft.fft2(g)fr = np.fft.fft2(r)# 将频域中的原点移动到图像中心fb_shift = np.fft.fftshift(fb)fg_shift = np.fft.fftshift(fg)fr_shift = np.fft.fftshift(fr)# 获取频谱图像magnitude_spectrum_b = 20 * np.log(np.abs(fb_shift))magnitude_spectrum_g = 20 * np.log(np.abs(fg_shift))magnitude_spectrum_r = 20 * np.log(np.abs(fr_shift))# 获取图像高度height, width = img.shape[:2]# 计算周期噪声的频率成分dft_height = np.ceil(height / 10)cy = np.arange(dft_height, height, dft_height)cx = np.arange(width)# 将周期噪声的频率成分设置为0for y in cy:fb_shift[int(y) - 1:int(y) + 1, :] = 0fg_shift[int(y) - 1:int(y) + 1, :] = 0fr_shift[int(y) - 1:int(y) + 1, :] = 0# 进行反傅里叶变换,得到去噪后的图像ib = np.fft.ifft2(np.fft.ifftshift(fb_shift))ig = np.fft.ifft2(np.fft.ifftshift(fg_shift))ir = np.fft.ifft2(np.fft.ifftshift(fr_shift))# 将每个通道的结果合并为一张去噪后的彩色图像denoised_img = cv2.merge((ib.real, ig.real, ir.real))#---------draw figures--------------##plt.imshow(cv2.cvtColor(result, cv2.COLOR_BGR2RGB)),plt.title('task3 output')#plt.show()#---------save figures--------------#cv2.imwrite("task3_proc.jpg", denoised_img)if __name__ == '__main__':task_one()task_two()task_three()
相关文章:
HNU计算机视觉作业一
前言 选修的是蔡mj老师的计算机视觉,上课还是不错的,但是OpenCV可能需要自己学才能完整把作业写出来。由于没有认真学,这门课最后混了80多分,所以下面作业解题过程均为自己写的,并不是标准答案,仅供参考 …...
Java:SpringBoot获取当前运行的环境activeProfile
代码示例 /*** 启动监听器*/ Component public class AppListener implements ApplicationListener<ApplicationReadyEvent> {Overridepublic void onApplicationEvent(ApplicationReadyEvent event) {// 获取当前的环境,如果是test,则直接返回Co…...
射频功率放大器的参数有哪些
射频功率放大器是射频通信系统中重要的组件,用于将输入的射频信号放大到需要的功率水平。在设计和选择射频功率放大器时,需要考虑多种参数。下面西安安泰将详细介绍射频功率放大器的常见参数。 1、P1dB功率压缩点 当放大器的输入功率比较低时,…...
3-5、多态性
语雀原文链接 文章目录 1、多态类型2、上下转型3、instanceof 1、多态类型 编译时多态:方法重载 在编译阶段就已经确定要调用哪个重载的方法 运行时多态:方法重写 具体调用哪个子类的方法要到运行的时候,结果才能确定,多态只针对…...
什么是https 加密协议?
什么是https 加密协议? 加密通信的作用加密原理数字证书SSL/TLS 协议部署和使用重要性 HTTPS(Hyper Text Transfer Protocol Secure)是一种网络传输协议,它是基于HTTP协议的扩展,通过加密通信内容来保障数据传输的安全…...
低压无功补偿在分布式光伏现场中的应用
摘要:分布式光伏电站由于建设时间短、技术成熟、收益明显而发展迅速,但光伏并网引起用户功率因数异常的问题也逐渐凸显。针对分布式光伏电站接入配电网后功率因数降低的问题,本文分析了低压无功补偿装置补偿失效的原因,并提出了一…...
人工智能技术在宽域飞行器控制中的应用
近年来,以空天飞行器、高超声速飞行器等 ̈1 为典型代表的宽域飞行器蓬勃发展,如图1所示,其 不仅对高端装备制造、空间信息以及太空经济等领 域产生辐射带动作用,进一步提升了中国在航空航 天领域的自主创新能力,同时也…...
NGINX高性能服务器与关键概念解析
目录 1 NGINX简介2 NGINX的特性3 正向代理4 反向代理5 负载均衡6 动静分离7 高可用8 结语 1 NGINX简介 NGINX(“engine x”)在网络服务器和代理服务器领域备受推崇。作为一款高性能的 HTTP 和反向代理服务器,它以轻量级、高并发处理能力以及…...
云ssrf
https://book.hacktricks.xyz/pentesting-web/ssrf-server-side-request-forgery/cloud-ssrf SSRF -> EC2 Metadata API -> IAM临时Security Token -> AWS SSM -> RCESSRF -> EC2 Metadata API -> IAM临时Security Token -> AWS Lambda -> RCESSRF -&g…...
面试题目总结(三)
1. Spring、Springboot、springMVC、Spring Cloud 的区别: Spring:Spring 是一个开源的、轻量级的Java框架,提供了丰富的功能和组件,用于构建企业级应用程序。Spring框架包含了很多模块,包括核心容器、数据访问、事物…...
Kubernetes入门笔记——(2)k8s设计文档
k8s最初源自谷歌的Brog项目,架构与其类似,主要包括etcd、api server、controller manager、scheduler、kubelet和kube-proxy等组件 etcd:分布式存储,保存k8s集群的状态 api server:资源操作的唯一入口,…...
LoadBalancer将服务暴露到外部实现负载均衡metallb-layer2模式配置介绍
目录 一.metallb简介 1.支持多种负载均衡协议 2.支持自定义 IP 地址范围 3.无需额外的硬件设备 4.易于安装和配置 5.可扩展性强 6.layer2模式下选举的leader节点压力大 二.layer2模式配置演示 1.开启ipvs并开启严格ARP模式 2.下载并应用metallb 3.创建一个 IPAddres…...
【pytest】单元测试文件的写法
前言 可怜的宾馆,可怜得像被12月的冷雨淋湿的一条三只腿的黑狗。——《舞舞舞》 \;\\\;\\\; 目录 前言test_1或s_test格式非测试文件pytest.fixture()装饰器pytestselenium test_1或s_test格式 要么 test_前缀 在前,要么 _test后缀 在后! …...
arcgis for js 添加自定义叠加图片到地图坐标点上
在使用arcgis for js开发地图绘制图层时,可以通过相关api实现添加图标到某个坐标点,那么如果现在有一个需要添加一个小图叠大图的需求,又或者是自定义绘制图标,如何实现? 1、简单地绘制一个图标到底图图层上面 const…...
记录 | linux下互换键盘的Ctrl和CapsLock键
互换ctrl和CapsLK setxkbmap -option "ctrl:swapcaps"打开设置文件: sudo vim /etc/default/keyboard将其中的XKBOPTIONS中添加ctrl:swapcaps即可,如下所示: # KEYBOARD CONFIGURATION FILE# Consult the keyboard(5) manual pa…...
【公网远程手机Android服务器】安卓Termux搭建Web服务器
🎥 个人主页:深鱼~🔥收录专栏:cpolar🌄欢迎 👍点赞✍评论⭐收藏 目录 概述 1.搭建apache 2.安装cpolar内网穿透 3.公网访问配置 4.固定公网地址 5.添加站点 概述 Termux是一个Android终端仿真应用程…...
【银行测试】金融项目+测试方法范围分析,功能/接口/性能/安全...
目录:导读 前言一、Python编程入门到精通二、接口自动化项目实战三、Web自动化项目实战四、App自动化项目实战五、一线大厂简历六、测试开发DevOps体系七、常用自动化测试工具八、JMeter性能测试九、总结(尾部小惊喜) 前言 1、金融行业软件特…...
Java网络编程——安全网络通信
在网络上,信息在由源主机到目标主机的传输过程中会经过其他计算机。在一般情况下,中间的计算机不会监听路过的信息。但在使用网上银行或者进行信用卡交易时,网络上的信息有可能被非法分子监听,从而导致个人隐私的泄露。由于Intern…...
云原生数据库是什么?它的作用是啥?
目前来说,各厂商的云原生数据库在演进路线上分成了两个略有不同的路径来解决不同的问题。 一种是各大公有云厂商选择的,优先保证上云兼容性的路线,就是基于存算分离架构对传统数据库进行改造的路线:通过把大量的日志操作放到后台…...
使用ansible批量初始化服务器
简介 本文详细介绍ansible怎么批量初始化服务器,包括ansible批量初始化服务器详细配置和步骤,有需要的小伙伴们可以参考借鉴,希望对大家有所帮助。 详细步骤 1、ansible要初始化的主机 [rootnginx ansible]# tail -3 /etc/ansible/hosts …...
Prompt Tuning、P-Tuning、Prefix Tuning的区别
一、Prompt Tuning、P-Tuning、Prefix Tuning的区别 1. Prompt Tuning(提示调优) 核心思想:固定预训练模型参数,仅学习额外的连续提示向量(通常是嵌入层的一部分)。实现方式:在输入文本前添加可训练的连续向量(软提示),模型只更新这些提示参数。优势:参数量少(仅提…...
【力扣数据库知识手册笔记】索引
索引 索引的优缺点 优点1. 通过创建唯一性索引,可以保证数据库表中每一行数据的唯一性。2. 可以加快数据的检索速度(创建索引的主要原因)。3. 可以加速表和表之间的连接,实现数据的参考完整性。4. 可以在查询过程中,…...
QMC5883L的驱动
简介 本篇文章的代码已经上传到了github上面,开源代码 作为一个电子罗盘模块,我们可以通过I2C从中获取偏航角yaw,相对于六轴陀螺仪的yaw,qmc5883l几乎不会零飘并且成本较低。 参考资料 QMC5883L磁场传感器驱动 QMC5883L磁力计…...
Docker 运行 Kafka 带 SASL 认证教程
Docker 运行 Kafka 带 SASL 认证教程 Docker 运行 Kafka 带 SASL 认证教程一、说明二、环境准备三、编写 Docker Compose 和 jaas文件docker-compose.yml代码说明:server_jaas.conf 四、启动服务五、验证服务六、连接kafka服务七、总结 Docker 运行 Kafka 带 SASL 认…...
【Java_EE】Spring MVC
目录 Spring Web MVC 编辑注解 RestController RequestMapping RequestParam RequestParam RequestBody PathVariable RequestPart 参数传递 注意事项 编辑参数重命名 RequestParam 编辑编辑传递集合 RequestParam 传递JSON数据 编辑RequestBody …...
今日科技热点速览
🔥 今日科技热点速览 🎮 任天堂Switch 2 正式发售 任天堂新一代游戏主机 Switch 2 今日正式上线发售,主打更强图形性能与沉浸式体验,支持多模态交互,受到全球玩家热捧 。 🤖 人工智能持续突破 DeepSeek-R1&…...
Android 之 kotlin 语言学习笔记三(Kotlin-Java 互操作)
参考官方文档:https://developer.android.google.cn/kotlin/interop?hlzh-cn 一、Java(供 Kotlin 使用) 1、不得使用硬关键字 不要使用 Kotlin 的任何硬关键字作为方法的名称 或字段。允许使用 Kotlin 的软关键字、修饰符关键字和特殊标识…...
JS设计模式(4):观察者模式
JS设计模式(4):观察者模式 一、引入 在开发中,我们经常会遇到这样的场景:一个对象的状态变化需要自动通知其他对象,比如: 电商平台中,商品库存变化时需要通知所有订阅该商品的用户;新闻网站中࿰…...
return this;返回的是谁
一个审批系统的示例来演示责任链模式的实现。假设公司需要处理不同金额的采购申请,不同级别的经理有不同的审批权限: // 抽象处理者:审批者 abstract class Approver {protected Approver successor; // 下一个处理者// 设置下一个处理者pub…...
uniapp 字符包含的相关方法
在uniapp中,如果你想检查一个字符串是否包含另一个子字符串,你可以使用JavaScript中的includes()方法或者indexOf()方法。这两种方法都可以达到目的,但它们在处理方式和返回值上有所不同。 使用includes()方法 includes()方法用于判断一个字…...
