HNU计算机视觉作业一
前言
选修的是蔡mj老师的计算机视觉,上课还是不错的,但是OpenCV可能需要自己学才能完整把作业写出来。由于没有认真学,这门课最后混了80多分,所以下面作业解题过程均为自己写的,并不是标准答案,仅供参考
任务1
修改test.py的task_one()函数,对task1.jpg进行去噪处理,处理结果保存为task1_proc.jpg
提示:请观察分析task1.jpg的噪声特点,并选择合适的处理方法

def task_one():img = cv2.imread('task1.jpg')#---------your code-----------------#median = cv2.medianBlur(img, 3)#---------draw figures--------------#plt.imshow(cv2.cvtColor(median, cv2.COLOR_BGR2RGB)),plt.title('task1 output')plt.show()#---------save figures--------------#cv2.imwrite("task1_proc.jpg", median)
效果如下:

任务2
修改test.py的task_two()函数,对task2.jpg进行去噪处理,处理结果保存为task2_proc.jpg
提示:请观察分析task2.jpg的噪声特点,并选择合适的处理方法

def task_two():img = cv2.imread('task2.jpg')#---------your code-----------------#blur = cv2.bilateralFilter(img,5,50,50)#---------draw figures--------------##plt.imshow(cv2.cvtColor(blur, cv2.COLOR_BGR2RGB)),plt.title('task2 output')#plt.show()#---------save figures--------------#cv2.imwrite("task2_proc.jpg", blur)
效果如下:

任务3
修改test.py的task_three()函数,对task3.jpg进行去噪处理,处理结果保存为task3_proc.jpg
提示:task3.jpg中的噪声为y轴方向的周期噪声,周期为图像高度(height)的1/10

这个不会做,弄了半天
def task_three():#img = cv2.imread('task3.jpg',1)#---------your code-----------------## 读取图像img = cv2.imread('task3.jpg')# 分离RGB通道b, g, r = cv2.split(img)# 对每个通道进行傅里叶变换fb = np.fft.fft2(b)fg = np.fft.fft2(g)fr = np.fft.fft2(r)# 将频域中的原点移动到图像中心fb_shift = np.fft.fftshift(fb)fg_shift = np.fft.fftshift(fg)fr_shift = np.fft.fftshift(fr)# 获取频谱图像magnitude_spectrum_b = 20 * np.log(np.abs(fb_shift))magnitude_spectrum_g = 20 * np.log(np.abs(fg_shift))magnitude_spectrum_r = 20 * np.log(np.abs(fr_shift))# 获取图像高度height, width = img.shape[:2]# 计算周期噪声的频率成分dft_height = np.ceil(height / 10)cy = np.arange(dft_height, height, dft_height)cx = np.arange(width)# 将周期噪声的频率成分设置为0for y in cy:fb_shift[int(y) - 1:int(y) + 1, :] = 0fg_shift[int(y) - 1:int(y) + 1, :] = 0fr_shift[int(y) - 1:int(y) + 1, :] = 0# 进行反傅里叶变换,得到去噪后的图像ib = np.fft.ifft2(np.fft.ifftshift(fb_shift))ig = np.fft.ifft2(np.fft.ifftshift(fg_shift))ir = np.fft.ifft2(np.fft.ifftshift(fr_shift))# 将每个通道的结果合并为一张去噪后的彩色图像denoised_img = cv2.merge((ib.real, ig.real, ir.real))#---------draw figures--------------##plt.imshow(cv2.cvtColor(result, cv2.COLOR_BGR2RGB)),plt.title('task3 output')#plt.show()#---------save figures--------------#cv2.imwrite("task3_proc.jpg", denoised_img)
效果和原图没啥区别。。。

源代码:
# -*- coding: utf-8 -*-
"""
Created on Fri Mar 31 14:51:59 2023@author: cai-mj
"""import numpy as np
import cv2
from matplotlib import pyplot as pltdef task_one():img = cv2.imread('task1.jpg')#---------your code-----------------#median = cv2.medianBlur(img, 3)#---------draw figures--------------#plt.imshow(cv2.cvtColor(median, cv2.COLOR_BGR2RGB)),plt.title('task1 output')plt.show()#---------save figures--------------#cv2.imwrite("task1_proc.jpg", median)def task_two():img = cv2.imread('task2.jpg')#---------your code-----------------#blur = cv2.bilateralFilter(img,5,50,50)#---------draw figures--------------##plt.imshow(cv2.cvtColor(blur, cv2.COLOR_BGR2RGB)),plt.title('task2 output')#plt.show()#---------save figures--------------#cv2.imwrite("task2_proc.jpg", blur)def task_three():#img = cv2.imread('task3.jpg',1)#---------your code-----------------## 读取图像img = cv2.imread('task3.jpg')# 分离RGB通道b, g, r = cv2.split(img)# 对每个通道进行傅里叶变换fb = np.fft.fft2(b)fg = np.fft.fft2(g)fr = np.fft.fft2(r)# 将频域中的原点移动到图像中心fb_shift = np.fft.fftshift(fb)fg_shift = np.fft.fftshift(fg)fr_shift = np.fft.fftshift(fr)# 获取频谱图像magnitude_spectrum_b = 20 * np.log(np.abs(fb_shift))magnitude_spectrum_g = 20 * np.log(np.abs(fg_shift))magnitude_spectrum_r = 20 * np.log(np.abs(fr_shift))# 获取图像高度height, width = img.shape[:2]# 计算周期噪声的频率成分dft_height = np.ceil(height / 10)cy = np.arange(dft_height, height, dft_height)cx = np.arange(width)# 将周期噪声的频率成分设置为0for y in cy:fb_shift[int(y) - 1:int(y) + 1, :] = 0fg_shift[int(y) - 1:int(y) + 1, :] = 0fr_shift[int(y) - 1:int(y) + 1, :] = 0# 进行反傅里叶变换,得到去噪后的图像ib = np.fft.ifft2(np.fft.ifftshift(fb_shift))ig = np.fft.ifft2(np.fft.ifftshift(fg_shift))ir = np.fft.ifft2(np.fft.ifftshift(fr_shift))# 将每个通道的结果合并为一张去噪后的彩色图像denoised_img = cv2.merge((ib.real, ig.real, ir.real))#---------draw figures--------------##plt.imshow(cv2.cvtColor(result, cv2.COLOR_BGR2RGB)),plt.title('task3 output')#plt.show()#---------save figures--------------#cv2.imwrite("task3_proc.jpg", denoised_img)if __name__ == '__main__':task_one()task_two()task_three()
相关文章:
HNU计算机视觉作业一
前言 选修的是蔡mj老师的计算机视觉,上课还是不错的,但是OpenCV可能需要自己学才能完整把作业写出来。由于没有认真学,这门课最后混了80多分,所以下面作业解题过程均为自己写的,并不是标准答案,仅供参考 …...
Java:SpringBoot获取当前运行的环境activeProfile
代码示例 /*** 启动监听器*/ Component public class AppListener implements ApplicationListener<ApplicationReadyEvent> {Overridepublic void onApplicationEvent(ApplicationReadyEvent event) {// 获取当前的环境,如果是test,则直接返回Co…...
射频功率放大器的参数有哪些
射频功率放大器是射频通信系统中重要的组件,用于将输入的射频信号放大到需要的功率水平。在设计和选择射频功率放大器时,需要考虑多种参数。下面西安安泰将详细介绍射频功率放大器的常见参数。 1、P1dB功率压缩点 当放大器的输入功率比较低时,…...
3-5、多态性
语雀原文链接 文章目录 1、多态类型2、上下转型3、instanceof 1、多态类型 编译时多态:方法重载 在编译阶段就已经确定要调用哪个重载的方法 运行时多态:方法重写 具体调用哪个子类的方法要到运行的时候,结果才能确定,多态只针对…...
什么是https 加密协议?
什么是https 加密协议? 加密通信的作用加密原理数字证书SSL/TLS 协议部署和使用重要性 HTTPS(Hyper Text Transfer Protocol Secure)是一种网络传输协议,它是基于HTTP协议的扩展,通过加密通信内容来保障数据传输的安全…...
低压无功补偿在分布式光伏现场中的应用
摘要:分布式光伏电站由于建设时间短、技术成熟、收益明显而发展迅速,但光伏并网引起用户功率因数异常的问题也逐渐凸显。针对分布式光伏电站接入配电网后功率因数降低的问题,本文分析了低压无功补偿装置补偿失效的原因,并提出了一…...
人工智能技术在宽域飞行器控制中的应用
近年来,以空天飞行器、高超声速飞行器等 ̈1 为典型代表的宽域飞行器蓬勃发展,如图1所示,其 不仅对高端装备制造、空间信息以及太空经济等领 域产生辐射带动作用,进一步提升了中国在航空航 天领域的自主创新能力,同时也…...
NGINX高性能服务器与关键概念解析
目录 1 NGINX简介2 NGINX的特性3 正向代理4 反向代理5 负载均衡6 动静分离7 高可用8 结语 1 NGINX简介 NGINX(“engine x”)在网络服务器和代理服务器领域备受推崇。作为一款高性能的 HTTP 和反向代理服务器,它以轻量级、高并发处理能力以及…...
云ssrf
https://book.hacktricks.xyz/pentesting-web/ssrf-server-side-request-forgery/cloud-ssrf SSRF -> EC2 Metadata API -> IAM临时Security Token -> AWS SSM -> RCESSRF -> EC2 Metadata API -> IAM临时Security Token -> AWS Lambda -> RCESSRF -&g…...
面试题目总结(三)
1. Spring、Springboot、springMVC、Spring Cloud 的区别: Spring:Spring 是一个开源的、轻量级的Java框架,提供了丰富的功能和组件,用于构建企业级应用程序。Spring框架包含了很多模块,包括核心容器、数据访问、事物…...
Kubernetes入门笔记——(2)k8s设计文档
k8s最初源自谷歌的Brog项目,架构与其类似,主要包括etcd、api server、controller manager、scheduler、kubelet和kube-proxy等组件 etcd:分布式存储,保存k8s集群的状态 api server:资源操作的唯一入口,…...
LoadBalancer将服务暴露到外部实现负载均衡metallb-layer2模式配置介绍
目录 一.metallb简介 1.支持多种负载均衡协议 2.支持自定义 IP 地址范围 3.无需额外的硬件设备 4.易于安装和配置 5.可扩展性强 6.layer2模式下选举的leader节点压力大 二.layer2模式配置演示 1.开启ipvs并开启严格ARP模式 2.下载并应用metallb 3.创建一个 IPAddres…...
【pytest】单元测试文件的写法
前言 可怜的宾馆,可怜得像被12月的冷雨淋湿的一条三只腿的黑狗。——《舞舞舞》 \;\\\;\\\; 目录 前言test_1或s_test格式非测试文件pytest.fixture()装饰器pytestselenium test_1或s_test格式 要么 test_前缀 在前,要么 _test后缀 在后! …...
arcgis for js 添加自定义叠加图片到地图坐标点上
在使用arcgis for js开发地图绘制图层时,可以通过相关api实现添加图标到某个坐标点,那么如果现在有一个需要添加一个小图叠大图的需求,又或者是自定义绘制图标,如何实现? 1、简单地绘制一个图标到底图图层上面 const…...
记录 | linux下互换键盘的Ctrl和CapsLock键
互换ctrl和CapsLK setxkbmap -option "ctrl:swapcaps"打开设置文件: sudo vim /etc/default/keyboard将其中的XKBOPTIONS中添加ctrl:swapcaps即可,如下所示: # KEYBOARD CONFIGURATION FILE# Consult the keyboard(5) manual pa…...
【公网远程手机Android服务器】安卓Termux搭建Web服务器
🎥 个人主页:深鱼~🔥收录专栏:cpolar🌄欢迎 👍点赞✍评论⭐收藏 目录 概述 1.搭建apache 2.安装cpolar内网穿透 3.公网访问配置 4.固定公网地址 5.添加站点 概述 Termux是一个Android终端仿真应用程…...
【银行测试】金融项目+测试方法范围分析,功能/接口/性能/安全...
目录:导读 前言一、Python编程入门到精通二、接口自动化项目实战三、Web自动化项目实战四、App自动化项目实战五、一线大厂简历六、测试开发DevOps体系七、常用自动化测试工具八、JMeter性能测试九、总结(尾部小惊喜) 前言 1、金融行业软件特…...
Java网络编程——安全网络通信
在网络上,信息在由源主机到目标主机的传输过程中会经过其他计算机。在一般情况下,中间的计算机不会监听路过的信息。但在使用网上银行或者进行信用卡交易时,网络上的信息有可能被非法分子监听,从而导致个人隐私的泄露。由于Intern…...
云原生数据库是什么?它的作用是啥?
目前来说,各厂商的云原生数据库在演进路线上分成了两个略有不同的路径来解决不同的问题。 一种是各大公有云厂商选择的,优先保证上云兼容性的路线,就是基于存算分离架构对传统数据库进行改造的路线:通过把大量的日志操作放到后台…...
使用ansible批量初始化服务器
简介 本文详细介绍ansible怎么批量初始化服务器,包括ansible批量初始化服务器详细配置和步骤,有需要的小伙伴们可以参考借鉴,希望对大家有所帮助。 详细步骤 1、ansible要初始化的主机 [rootnginx ansible]# tail -3 /etc/ansible/hosts …...
手游刚开服就被攻击怎么办?如何防御DDoS?
开服初期是手游最脆弱的阶段,极易成为DDoS攻击的目标。一旦遭遇攻击,可能导致服务器瘫痪、玩家流失,甚至造成巨大经济损失。本文为开发者提供一套简洁有效的应急与防御方案,帮助快速应对并构建长期防护体系。 一、遭遇攻击的紧急应…...
Swift 协议扩展精进之路:解决 CoreData 托管实体子类的类型不匹配问题(下)
概述 在 Swift 开发语言中,各位秃头小码农们可以充分利用语法本身所带来的便利去劈荆斩棘。我们还可以恣意利用泛型、协议关联类型和协议扩展来进一步简化和优化我们复杂的代码需求。 不过,在涉及到多个子类派生于基类进行多态模拟的场景下,…...
React19源码系列之 事件插件系统
事件类别 事件类型 定义 文档 Event Event 接口表示在 EventTarget 上出现的事件。 Event - Web API | MDN UIEvent UIEvent 接口表示简单的用户界面事件。 UIEvent - Web API | MDN KeyboardEvent KeyboardEvent 对象描述了用户与键盘的交互。 KeyboardEvent - Web…...
BCS 2025|百度副总裁陈洋:智能体在安全领域的应用实践
6月5日,2025全球数字经济大会数字安全主论坛暨北京网络安全大会在国家会议中心隆重开幕。百度副总裁陈洋受邀出席,并作《智能体在安全领域的应用实践》主题演讲,分享了在智能体在安全领域的突破性实践。他指出,百度通过将安全能力…...
爬虫基础学习day2
# 爬虫设计领域 工商:企查查、天眼查短视频:抖音、快手、西瓜 ---> 飞瓜电商:京东、淘宝、聚美优品、亚马逊 ---> 分析店铺经营决策标题、排名航空:抓取所有航空公司价格 ---> 去哪儿自媒体:采集自媒体数据进…...
九天毕昇深度学习平台 | 如何安装库?
pip install 库名 -i https://pypi.tuna.tsinghua.edu.cn/simple --user 举个例子: 报错 ModuleNotFoundError: No module named torch 那么我需要安装 torch pip install torch -i https://pypi.tuna.tsinghua.edu.cn/simple --user pip install 库名&#x…...
保姆级教程:在无网络无显卡的Windows电脑的vscode本地部署deepseek
文章目录 1 前言2 部署流程2.1 准备工作2.2 Ollama2.2.1 使用有网络的电脑下载Ollama2.2.2 安装Ollama(有网络的电脑)2.2.3 安装Ollama(无网络的电脑)2.2.4 安装验证2.2.5 修改大模型安装位置2.2.6 下载Deepseek模型 2.3 将deepse…...
排序算法总结(C++)
目录 一、稳定性二、排序算法选择、冒泡、插入排序归并排序随机快速排序堆排序基数排序计数排序 三、总结 一、稳定性 排序算法的稳定性是指:同样大小的样本 **(同样大小的数据)**在排序之后不会改变原始的相对次序。 稳定性对基础类型对象…...
基于IDIG-GAN的小样本电机轴承故障诊断
目录 🔍 核心问题 一、IDIG-GAN模型原理 1. 整体架构 2. 核心创新点 (1) 梯度归一化(Gradient Normalization) (2) 判别器梯度间隙正则化(Discriminator Gradient Gap Regularization) (3) 自注意力机制(Self-Attention) 3. 完整损失函数 二…...
AI语音助手的Python实现
引言 语音助手(如小爱同学、Siri)通过语音识别、自然语言处理(NLP)和语音合成技术,为用户提供直观、高效的交互体验。随着人工智能的普及,Python开发者可以利用开源库和AI模型,快速构建自定义语音助手。本文由浅入深,详细介绍如何使用Python开发AI语音助手,涵盖基础功…...
