做笑话网站赚钱/推广软件赚钱违法吗
智能优化算法应用:基于斑马算法无线传感器网络(WSN)覆盖优化 - 附代码
文章目录
- 智能优化算法应用:基于斑马算法无线传感器网络(WSN)覆盖优化 - 附代码
- 1.无线传感网络节点模型
- 2.覆盖数学模型及分析
- 3.斑马算法
- 4.实验参数设定
- 5.算法结果
- 6.参考文献
- 7.MATLAB代码
摘要:本文主要介绍如何用斑马算法进行无线传感器网(WSN)覆盖优化。
1.无线传感网络节点模型
本文主要基于0/1模型,进行寻优。在二维平面上传感器节点的感知范围是一个以节点为圆心,半径为 R n R_n Rn的圆形区域,该圆形区域通常被称为该节点的“感知圆盘”, R n R_n Rn称为传感器节点的感知半径,感知半径与节点内置传感器件的物理特性有关,假设节点 n n n的位置坐标为 ( x n , y n ) (x_n,y_n) (xn,yn)在0-1感知模型中,对于平面上任意一点 p ( x p , y p ) p(x_p,y_p) p(xp,yp),则节点 n n n监测到区域内点 p p p的事件发生概率为:
P r ( n , p ) = { 1 , d ( n , p ) ≤ R n 0 , e s l e (1) P_r(n,p)=\begin{cases}1, \,d(n,p)\leq R_n\\ 0,\, esle \end{cases}\tag{1} Pr(n,p)={1,d(n,p)≤Rn0,esle(1)
其中 d ( n , p ) = ( x n − x p ) 2 + ( y n − y p ) 2 d(n,p)=\sqrt{(x_n-x_p)^2+(y_n-y_p)^2} d(n,p)=(xn−xp)2+(yn−yp)2为点和之间的欧式距离。
2.覆盖数学模型及分析
现假定目标监测区域为二维平面,在区域 A r e a Area Area上投放同型结构传感器节点的数目为N,每个节点的位置坐标值假设已被初始化赋值,且节点的感知半径r。传感器节点集则表示为:
N o d e { x 1 , . . . , x N } (2) Node\{x_1,...,x_N\} \tag{2} Node{x1,...,xN}(2)
其中 n o d e i = { x i , y i , r } node_i=\{x_i,y_i,r\} nodei={xi,yi,r},表示以节点 ( x i , y i ) (x_i,y_i) (xi,yi)为圆心,r为监测半径的圆,假定监测区域 A r e a Area Area被数字化离散为 m ∗ n m*n m∗n个像素点,像素点的坐标为 ( x , y ) (x,y) (x,y),目标像素点与传感器节点间的距离为:
d ( n o d e i , p ) = ( x i − x ) 2 + ( y i − y ) 2 (3) d(node_i,p)=\sqrt{(x_i-x)^2+(y_i-y)^2}\tag{3} d(nodei,p)=(xi−x)2+(yi−y)2(3)
目标区域内像素点被传感器节点所覆盖的事件定义为 c i c_i ci。则该事件发生的概率 P c i P{c_i} Pci即为像素点 ( x , y ) (x,y) (x,y)被传感器节点 n o d e i node_i nodei所覆盖的概率:
P c o v ( x , y , n o d e i ) = { 1 , i f d ( n o d e i , p ) ≤ r 0 , e s l e (4) P_{cov}(x,y,node_i)=\begin{cases}1, if\,d(node_i,p)\leq r\\ 0,\, esle \end{cases}\tag{4} Pcov(x,y,nodei)={1,ifd(nodei,p)≤r0,esle(4)
我们将所有的传感器节点在目标监测环境中的区域覆盖率 C o v e r R a t i o CoverRatio CoverRatio定义为传感器节点集的覆盖面积与监测区域的面积之比,如公式所示:
C o v e r R a t i o = ∑ P c o v m ∗ n (5) CoverRatio = \frac{\sum P_{cov}}{m*n}\tag{5} CoverRatio=m∗n∑Pcov(5)
那我们的最终目标就是找到一组节点使得覆盖率最大。
3.斑马算法
斑马算法原理请参考:https://blog.csdn.net/u011835903/article/details/130565746
该算法是寻找最小值。于是适应度函数定义为未覆盖率最小,即覆盖率最大。如下:
f u n = a r g m i n ( 1 − C o v e r R a t i o ) = a r g m i n ( 1 − ∑ P c o v m ∗ n ) (6) fun = argmin(1 - CoverRatio) = argmin(1-\frac{\sum P_{cov}}{m*n}) \tag{6} fun=argmin(1−CoverRatio)=argmin(1−m∗n∑Pcov)(6)
4.实验参数设定
无线传感器覆盖参数设定如下:
%% 设定WNS覆盖参数,
%% 默认输入参数都是整数,如果想定义小数,请自行乘以系数变为整数再做转换。
%% 比如范围1*1,R=0.03可以转换为100*100,R=3;
%区域范围为AreaX*AreaY
AreaX = 100;
AreaY = 100;
N = 20 ;%覆盖节点数
R = 15;%通信半径
斑马算法参数如下:
%% 设定优化参数
pop=30; % 种群数量
Max_iteration=80; %设定最大迭代次数
lb = ones(1,2*N);
ub = [AreaX.*ones(1,N),AreaY.*ones(1,N)];
dim = 2*N;%维度为2N,N个坐标点
5.算法结果
从结果来看,覆盖率在优化过程中不断上升,表明斑马算法对覆盖优化起到了优化的作用。
6.参考文献
[1] 史朝亚. 基于PSO算法无线传感器网络覆盖优化的研究[D]. 南京理工大学.
7.MATLAB代码
相关文章:

智能优化算法应用:基于斑马算法无线传感器网络(WSN)覆盖优化 - 附代码
智能优化算法应用:基于斑马算法无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用:基于斑马算法无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.斑马算法4.实验参数设定5.算法结果6.参考文献7.MATLAB…...

deepface:实现人脸的识别和分析
deepface介绍 deepface能够实现的功能 人脸检测:deepface 可以在图像中检测出人脸的位置,为后续的人脸识别任务提供基础。 人脸对齐:为了提高识别准确性,deepface 会将检测到的人脸进行对齐操作,消除姿态、光照和表…...

Pytorch当中nn.Identity()层的作用
在深度学习中,nn.Identity() 是 PyTorch 中的一个层(layer)。它实际上是一个恒等映射,不对输入进行任何变换或操作,只是简单地将输入返回作为输出。 通常在神经网络中,各种层(比如全连接层、卷…...

linux课程第二课------命令的简单的介绍2
作者前言 🎂 ✨✨✨✨✨✨🍧🍧🍧🍧🍧🍧🍧🎂 🎂 作者介绍: 🎂🎂 🎂 🎉🎉🎉…...

【PTA刷题】 求子串(代码+详解)
【PTA刷题】 求子串(代码详解) 题目 请编写函数,求子串。 函数原型 char* StrMid(char *dst, const char *src, int idx, int len);说明:函数取源串 src 下标 idx 处开始的 len 个字符,保存到目的串 dst 中,函数值为 dst。若 len…...

初识Dockerfile
Dockerfile:创建镜像,创建自定义的镜像 包括配置文件,挂载点,对外暴露的端口,设置环境变量 Docker的创建镜像方式: 1.基于已经镜像进行创建 根据官方号已提供的镜像源,创建镜像,然…...

Python入门第2篇(pip、字符串、方法、json、io操作)
目录 pip包管理器 字符串 方法 json 文件操作 pip包管理器 包管理器类似.NET下的nuget,主要用于管理引用依赖项。 安装Python的时候,已经默认安装了pip包管理器,因此无需单独安装 cmd,输入:pip --version 显示…...

IntelliJ IDEA 智能(AI)编码工具插件
文章目录 通义灵码-阿里CodeGeeX-清华大学智谱AIBitoAmazon CodeWhisperer-亚马逊GitHub Copilot - 买不起CodeiumAIXcoder 仅仅自动生成单元测试功能 TestMe插件(免费)仅仅是模板填充,不智能。 Squaretest插件(收费)…...

Java编程中通用的正则表达式(二)
正则表达式,又称正则式、规则表达式、正规表达式、正则模式或简称正则,是一种用来匹配字符串的工具。它是一种字符串模式的表示方法,可以用来检索、替换和验证文本。正则表达式是一个字符串,它描述了一些字符的组合,这…...

[GPT]Andrej Karpathy微软Build大会GPT演讲(上)--GPT如何训练
前言 OpenAI的创始人之一,大神Andrej Karpthy刚在微软Build 2023开发者大会上做了专题演讲:State of GPT(GPT的现状)。 他详细介绍了如何从GPT基础模型一直训练出ChatGPT这样的助手模型(assistant model)。作者不曾在其他公开视频里看过类似的内容,这或许是OpenAI官方…...

接口测试-Jmeter使用
一、线程组 1.1 作用 线程组就是控制Jmeter用于执行测试的一组用户 1.2 位置 右键点击‘测试计划’-->添加-->线程(用户)-->线程组 1.3 特点 模拟多人操作线程组可以添加多个,多个线程组可以并行或者串行取样器(请求)和逻辑控制器必须依赖线程组才能…...

十大排序(含java代码)
一、冒泡排序 冒泡排序就是把小的元素往前调或者把大的元素往后调,比较是相邻的两个元素比较,交换也发生在这两个元素之间。(类似于气泡上浮过程) 动图演示 代码实现 int a[]{2,5,3,7,4,8};for (int i 0; i < a.length; i) {f…...

js基础:简介、变量与数据类型、流程循环控制语句、数组及其api
JS基础:简介、变量与数据类型、流程循环控制语句、数组及其api 一、简介 1、js概述 tip:JavaScript是什么? 有什么作用? JavaScript(简称JS)是一种轻量级的、解释性的编程语言,主要用于在网页…...

kubeadm搭建单master多node的k8s集群--小白文,图文教程
参考文献 K8S基础知识与集群搭建 kubeadm搭建单master多node的k8s集群—主要参考这个博客,但是有坑,故贴出我自己的过程,坑会少很多 注意: 集群配置是:一台master:zabbixagent-k8smaster,两台…...

CSS层叠样式表一
1,CSS简介 1.1 CSS-网页的美容师 CSS的主要使用场景就是美化网页,布局页面的 CSS也是一种标记语言 CSS主要用于设置HTML页面中的文本内容(字体,大小,对齐方式等)、图片的外形(宽高、边框样式…...

【等保】安徽省等保测评机构名单看这里!
随着互联网技术的飞速发展,网络安全已成为国家安全、社会稳定的重要保障,因此我们严格贯彻落实等保政策。等保测评机构在等保制度执行过程中发挥着重要的作用。现在我们就来看看安徽省等保测评机构有哪些? 【等保】安徽省等保测评机构名单看…...

学习IO的第八天
作业:使用信号灯循环输出ABC sem.c #include <head.h>union semun {int val; /* Value for SETVAL */struct semid_ds *buf; /* Buffer for IPC_STAT, IPC_SET */unsigned short *array; /* Array for GETALL, SETALL */struct seminf…...

【clickhouse】ck远程访问另一个ck
代码实现 CREATE TABLE tmp.tbsas remote( host, database_name, table_name, user, password );就相当于从ck1直接请求ck2 参考文档 https://github.com/ClickHouse/ClickHouse/issues/15295 https://clickhouse.com/docs/zh/sql-reference/table-functions/remote...

Django的logging-日志模块的简单使用方法
扩展阅读: Python-Django的“日志功能-日志模块(logging模块)-日志输出”的功能详解 现在有下面的Python代码: # -*- coding: utf-8 -*-def log_out_test(content_out):print(content_out)content1 "i love you01" log_out_test(content1)现…...

argparse --- 命令行选项、参数和子命令解析器
3.2 新版功能. 源代码: Lib/argparse.py 教程 此页面包含该 API 的参考信息。有关 Python 命令行解析更细致的介绍,请参阅 argparse 教程。 argparse 模块可以让人轻松编写用户友好的命令行接口。 程序定义它需要哪些参数,argparse 将会知…...

洛谷 P8802 [蓝桥杯 2022 国 B] 出差
文章目录 [蓝桥杯 2022 国 B] 出差题目链接题目描述输入格式输出格式样例 #1样例输入 #1样例输出 #1 提示 思路解析CODE [蓝桥杯 2022 国 B] 出差 题目链接 https://www.luogu.com.cn/problem/P8802 题目描述 A \mathrm{A} A 国有 N N N 个城市,编号为 1 … N …...

fastadmin配置教程
第一. 打开小皮,创建一个网站 第二. 打开fastadmin官网,下载压缩包 下载好后是这个样子 打开网站的根目录,将这个压缩包压缩到你网站的根目录里 第三,小皮里面创建一个数据库 第四,然后打开网站,输入创…...

golang游戏服务器 - tgf系列课程01
TGF框架的特点和功能 课程介绍了TGF框架的特点和功能在第一节课程中我们并不会介绍框架的使用。我们希望在这节课程中,能让你了解到tgf是一个什么样的框架 概要 本节课程介绍了TGF框架的特点和功能。TGF是一个开箱即用的服务器框架, 适合中小型团队和独立开发者进行游戏开发。…...

react dom的diff理解及性能优化
diff的三大过程 当某个值变化时,他从根组件寻找 (key,state,props,context) 当父组件稳定时,react会跳过子组件的props的对比 只有当当前组件值改变时,从他开始,所有的子孙节点都会对比props props是全等比较,所以&am…...

【acwing】92. 递归实现指数型枚举
穿越隧道 递归枚举、位运算 方法① 从1到n,顺序访问每位数,是否选择,每位数有两种状态,选1或不选0. AC代码如下: #include <iostream> using namespace std;const int N 100; // bool st[N]; int n;void dfs(in…...

【面试】Java最新面试题资深开发-分布式系统中的CAP理论
问题六:分布式系统中的CAP理论 分布式系统的设计涉及到CAP理论,即一致性(Consistency)、可用性(Availability)、分区容忍性(Partition Tolerance)。请解释一下CAP理论是什么&#x…...

Windows下使用CMD修改本地IP
在网络适配器界面查看当前网线连接的哪个网口,我当前连的是 以太网 这个名字的: 在windows下使用管理员权限打开CMD命令工具,输入如下命令(如我想本地ip改成192.168.2.4): netsh interface ip set address "以太网" st…...

20231211-DISM++安装win10-22h2-oct
20231211-DISM安装win10-22h2-oct 一、软件环境 zh-cn_windows_10_consumer_editions_version_22h2_updated_oct_2023_x64_dvd_eb811ccc.isowepe x64 v2.3标签:win10 22h2 wepe dism分栏:WINDOWS 二、硬件环境 8G或以上的有PE功能的启动U盘一个台式机…...

前端知识笔记(五)———前端密钥怎么存储,才最安全?
前端密钥存储安全是非常重要的,具体原因如下: 保护敏感数据:密钥用于保护敏感数据的安全性。如果密钥泄露,攻击者可能能够访问和篡改敏感数据,导致数据泄露、数据被篡改或系统被入侵。 防止恶意使用:在前端…...

【智能家居】智能家居项目
智能家居项目目录 项目目录结构 完整而典型的项目目录结构 CMake模板 CMake编译运行 README.md 项目说明文档 智能家居项目目录 【智能家居】面向对象编程OOP和设计模式(工厂模式) 【智能家居】一、工厂模式实现继电器灯控制 【智能家居】二、添加火灾检测模块(…...