当前位置: 首页 > news >正文

网上银行建设银行/武汉seo霸屏

网上银行建设银行,武汉seo霸屏,一般做网站用什么字体,宿迁房产网58同城网二手房企业信息化建设会越来越完善,越来越体系化,当今数据时代背景下更加强调、重视数据的价值,以数据说话,通过数据为企业提升渠道转化率、改善企业产品、实现精准运营,为企业打造自助模式的数据分析成果,以数据…

企业信息化建设会越来越完善,越来越体系化,当今数据时代背景下更加强调、重视数据的价值,以数据说话,通过数据为企业提升渠道转化率、改善企业产品、实现精准运营,为企业打造自助模式的数据分析成果,以数据驱动决策。

在实际项目中,要使用DAP数据分析平台将企业业务数据进行数据的清洗和汇聚,同时基于DAP平台的展现配置,可以根据业务主题构建相应的展现大屏,从而实现数据的可视化展现,为企业领导层的数据把控和运营决策分析提供支持,本篇文档主要介绍数据采集部分是如何进行使用。

1整体介绍

DAP数据分析平台就是采集各个业务系统的数据,进行数据筛选(表和字段、数据)、质量校验等步骤建立数仓,保证数据标准性、完整性、准确性,从而实现企业业务数据的统一,通过数据可视化展现、数据服务来展现DAP数据分析平台的价值。

1.1产品方案

首先介绍一下数通的产品体系:

数通的所有产品都是通过K8S云平台进行部署搭建产品环境,通过不同的产品组合方案来解决企业面临的不同信息化困境,帮助企业完善信息化发展。

上图所示通过DAP数据分析平台+MDM基础数据平台+ESB企业服务总线组成了数据中台方案,本次介绍的DAP数据分析平台就是此方案的核心,基础数据进行主数据治理,DAP数据分析平台进行业务数据治理,通过ESB进行数据的集成,帮助整合企业数据,统一管理,提升企业的数据价值。

1.2功能架构

数据分析平台全生命周期是通过采集各个业务系统数据构建数仓,从而进行有效分析的过程,能够真实、准确、有效地将企事业内部及行业外部相关数据进行可视化展现,帮助企事业提升行业洞察力,加强决策力,从而提升整体竞争力。

数据分析平台功能有:

1.数据来源(应用系统定义、数据源头配置、ODS数据定义)。

2.数仓模型(业务主题、指标管理、维度配置、事实配置、模型配置)。

3.数据调度(规则校验、调度资源、调度任务、日志管理)。

4.分析模型(数据集配置、立方体配置、业务类报表、多维度分析)。

5.算法模型(算法原型、算法开发、算法调用、算法日志)。

6.展现配置(导航管理、组件管理、展现主题、装饰管理)。

7.数据服务(接收服务、查询服务、算法数据、统计服务、指标服务、业务服务)。

8.统计分析(数据地图、质量分析、影响分析、血缘分析)。

9.系统管理(资源配置、组织机构、角色管理、人员管理、功能管理、系统日志)。

1.3算法说明

DAP的算法模型需要结合数据集来进行使用,数据通过数据治理的三步流程之后(数据从业务系统采集抽取到ODS,ODS清洗转换到数据仓库,数据仓库的数据进行加工汇总)构建的数据仓库,从而通过配置构建数据集,通过数据集的历史数据结合算法原型构建算法开发,将数据训练后生成模型对象,结合算法调用对未来数据进行预测,算法在使用时,还要符合业务逻辑,所以接下来对数据集成如何结合算法模型使用进行说明。

2数据说明

本次数据说明以销售数据进行说明,通过各项指标来对于销售额,利润额等数据来进行预测。

2.1 背景说明

本次预测的数据背景为对咖啡门店的销售额进行预测,通过营销费用的增多与减少,对应的就是店内的折扣力度,也就会影响店内订单数、客单价等指标,从而影响销售额的高低,而在使用材料中,使用品质好的材料,成本就会增高,利润降低,反之则是成本降低,利润增高。

使用历史数据中的订单数、客单价、假期天数等特征值去训练模型,将训练好的模型结合当前数据或未来数据中的假期天数等特征指标去预测销售额以及对于门店级别进行分类。

2.2 模型设计

1.构建门店表作为维度表,表字段中添加门店名称、门店等级,门店等级字段作为分类模型的预测字段。

2.构建销售表,表字段中添加当月假期天数、线上订单、线下订单、营销费用、材料费用、人工费用字段作为特征字段,添加时间(年月)作为维度信息,添加实际销售额字段作为度量字段,添加预测销售额字段作为预测值字段。

2.3 数据构建

1.采集同步:

(1)首先在ODS定义中使用参考表创建的方式将在业务系统中添加的门店表以及门店销售表采集抽取到ODS中间库,在编辑页面定义唯一字段与比较字段,确保数据同步时的唯一性以及准确性。

(2)编辑好ODS表之后,对于ODS表进行创建,结合ESB创建消息流程,进行数据同步。

2.清洗转换

清洗转换的作用是将ODS中的数据清洗转换到数据仓库,也就是对字段进行选取以及配置规则校验,接下来对具体实现进行说明。

(1)维度表:

维表是属于枚举类的信息,所以使用门店表作为维表,在创建维表时,来源表选择ODS中的门店表。

在字段信息中,除了导入原有字段外,需要手动新增预测等级字段,在进行分类时,对于预测等级字段进行回写。

同时在字段信息中,要对于字段配置唯一字段以及规则校验,目的同样是确保数据的唯一性以及准确性。

编辑好维表之后,对于维表进行创建,结合ESB创建消息流程,进行数据同步,同样在ESB设计器中的MF服务中创建消息流程,选择HTTP请求中的ODS转换到EDW。

(2)基础事实表:

基础事实表创建的为门店销售表,在来源表中选取ODS的门店销售表进行创建。

在字段信息中,导入需要的字段,并对字段配置唯一字段以及规则校验,操作与维表一致。字段编辑好之后,进行表的创建,同时结合ESB生成调度流程。

3.加工汇总:

(1)汇总事实表的创建分为两种方式:横向汇总与纵向汇总,横向汇总是对于字段配置表达式的方式进行字段间的汇总,纵向汇总是对于字段配置聚合类别的方式进行汇总,本次是基于上述所创建的门店销售基础事实表进行创建,通过销售额/(线上订单+线下订单)得出客单价,所以在创建时,来源表选取门店基础事实表,创建方式选择横向汇总。

(2)在字段信息中先进行数据导入,接下来手动新增客单价字段预计预测销售额字段。

(3)在汇总配置中新增表达式对于客单价字段进行汇总加工。

以上配置好之后,对于汇总事实表进行创建,结合ESB创建消息流程,进行数据同步。

3模型构建

数据仓库构建好之后,要对于数仓模型以及分析模型进行构建,接下来对于操作步骤进行说明。

3.1数仓模型

1.数据仓库中的数据构建好之后可以基于维度表与事实表创建数仓模型,数仓模型通过配置表之间的关联关系,将多表组合在一起进行数据展现,数仓模型也是创建分析模型的基础

2.创建门店销售统计模型,添加门店表以及门店销售汇总事实表。

3.在关联关系中配置两表之间的关联。

3.2分析模型

上述的数仓模型构建好之后就可以对于分析模型进行创建,因为后续算法模型需要使用的数据来源是数据集,所以本次在分析模型中,创建数据集即可。

首先在基本信息页面选取创建好的数仓模型。

在字段选择页面中选取使用的字段,保存后数据集就创建完成。

3.3数据展现

以上数据配置好之后,点击数据预览,就可以对于门店销售数据进行查看。

4算法模型

算法模型分为算法原型、算法开发、算法调用、算法日志,算法原型是在系统中预置好的算法,供算法开发使用,算法开发是针对开发人员使用,通过对算法开发进行数据、条件、属性以及对算法模型的调优之后,生成算法调用,供使用人员进行调用,调用后会生成对应的日志,查看调用详情信息。

由于算法原型是预置在产品中,所以接下来对于算法开发以及算法调用功能使用进行说明。

4.1算法开发

本次算法开发说明使用回归模型进行说明,回归模型属于有监督的模型,主要是针对连续性的数据进行预测,本次说明的回归模型是基于公司下多个门店历史年月中的假期天数、线上订单数、线下订单数与销售额之间的关系从而对于未来时间段的销售额进行预测。

1.首先在新增页面选取数据集以及算法原型。

2.在字段选择中选取特征值以及预测值,本次的销售预测是使用假期天数、线上、线下订单以及客单价来预测销售额。

3.因为是预测,所以需要使用一些大批量的历史数据来进行预测,这可以确保预测的准确性,所以需要在条件配置中配置时间条件。

4.算法开发会生成算法调用,算法调用的作用是对于数据进行预测后,将数据回写到数据库中,最终可以通过配置进行数据的可视化展现,所以需要对于数据的回写策略进行配置,回写分为表回写以及字段回写,本次使用的是字段回写,目标字段配置的是需要回写的字段,条件字段作为唯一值,确保数据的一致性。

5.以上配置好之后,对数据生成CSV文件,接下来对算法进行开发。

6.点击算法开发后打开在Jupyter NoteBook生成的算法开发代码,该代码是通过算法原型生成,接下来要对代码进行开发以及调优,下面对下图中的三段代码进行说明:

(1)在第一段代码中,首先是读取生成的csv文件,接下来对文件中的特征值和预测值拆分X和y,并将X和y中的数据拆分为8比2的占比作为各自的训练集以及测试集。

(2)在第二段代码中,通过传递的模型集合以及数据,求出不同模型的均方差值,均方差值是衡量预测值与真实值之间差异的指标,差值越小,说明模型的预测值与真实值之间的差异越小,模型的性能就越好,根据循环对比,找出最优模型。

(3)在第三段代码中,创建回归模型集合,调用第二段代码,找出最优模型。

7.接下来对之后的代码进行说明:

(1)在下图第一段代码中,根据寻找出的最优模型,进行参数调优,参数调优采取的方法是交叉验证,通过给出一个区间的参数,使用交叉验证后,会返回一个使用最佳参数的模型。

(2)第二段代码就是使用最优模型对数据进行打图,进行数据的可视化,可以直观地看出模型的效果好坏,下图的蓝色散点图为预测值散点图的分布,虚线是真实值最小值到最大值的直线分布,可以看出两个图形之间基本吻合,所以可以得出当前模型的效果很好。

8.算法开发好后进行解析代码,将代码存储至数据库中,最后再生成py文件,py文件是算法进行训练时需要调用的文件。

9.接下来点击执行,执行成功后生成模型对象,模型对象可以理解为算法开发后训练好的对象,在算法调用时,会调用该对象,使用该对象执行训练需要预测的数据特征值,就可以得到预测值,算法开发的执行方式同时还支持定时触发,条件值应该设为变量条件,比如当前年份/月份-1等,这样经过定时训练后就可以保证会实时训练新的数据,从而得到最新预测模型对象。

4.2算法调用

1.算法调用是基于算法开发生成,创建方式分为两种,一是在算法开发页面中,生成算法调用,二是在算法调用页面手动新增

2.在算法调用的条件配置中,需要将预测的条件进行添加。

3.配置好之后点击执行,将算法调用进行执行。

4.执行之后,会生成对应的算法日志,日志中可以查看执行的参数信息以及训练结果等信息。

5.算法调用执行方式除了手动执行还支持定时执行以及事件执行,定时执行是保证数据预测的实时性,事件执行是确保源数据发生变化时,预测同时也要进行执行,保证数据的一致性以及准确性。

4.3功能展示

算法在调用结束之后,会将数据进行预测并回写,接下来对预测分析导航进行查看。

5心得总结

在实际应用中,数据分析可帮助人们做出判断,以便采取适当行动,所以数据一定是标准的、完整的、准确的,通过上述数据采集把业务系统中不正确数据过滤掉、调整后,使数仓中的数据具有可用性,使用正确的数据进行分析预测,最后对于数据进行可视化展现,提升数据价值,正确引导公司的发展。

5.1过程总结

数据的可视化展现可以使大家能够用一些简短的图形就能体现那些复杂信息,而有些数据是预测型、统计分析类型,所以需要使用机器学习来对数据进行预测或者统计分析,最终使数据进行可视化的展现,让决策者可以轻松地获取查看各种不同的数据源。来分析过去某时间段企业的发展趋势,去规划未来的发展方向。

5.2重要事项

使用DAP数据分析平台进行算法数据预测时需要注意如下几个重点:

1.数据要具有业务逻辑,不论是在实际开发还是在数据预置,都要贴近业务,这才能使产品更加具有可用能力。

2.数据预置要有逻辑性,数据在进行预测时都是结合历史数据进行预测,只有数据之间的关系紧密,预测的数据才能准确。

3.要确保数据的联动性,数据从源头发生变化时,要进行事件的触发,确保预测数据的准确性。

5.3说在最后

DAP数据分析平台作用在于对海量数据进行采集分析治理,将治理后的数据通过配置进行可视化展现,提升数据价值,而算法模型的使用主要是结合历史数据对未来数据进行预测,并且可以通过调整预测值可以反推数据参数的变化,这可以有效地让决策者做出决策,提升企业价值。

相关文章:

DAP数据集成与算法模型如何结合使用

企业信息化建设会越来越完善,越来越体系化,当今数据时代背景下更加强调、重视数据的价值,以数据说话,通过数据为企业提升渠道转化率、改善企业产品、实现精准运营,为企业打造自助模式的数据分析成果,以数据…...

大数据监控

HBase 监控 {name“RegionServer”,sub“Server”,} irate(hadoop_hbase_totalrequestcount[5m]) irate(hadoop_hbase_totalrequestcount{instanceName“hacluster4”}[2m]) https://blog.csdn.net/Samooyou/article/details/129275640 https://www.tencentcloud.com/zh/doc…...

【C语言】数据结构——小堆实例探究

💗个人主页💗 ⭐个人专栏——数据结构学习⭐ 💫点击关注🤩一起学习C语言💯💫 导读: 我们在前面学习了单链表和顺序表,以及栈和队列。 今天我们来学习小堆。 关注博主或是订阅专栏&a…...

Vue中比较两个JSON对象的差异

要在Vue.js中实现JSON数据的对比差异功能,你可以使用一些库来简化任务,比如diff-match-patch。以下是一个简单的例子,演示如何使用deep-diff库在Vue.js中比较两个JSON对象的差异: 首先,确保你的项目中已经安装了diff-m…...

前端知识库Html5和CSS3

1、常见的水平垂直居中实现方案 最简单的方案是flex布局 .container{display: flex;align-items: center;justify-content: center; }绝对定位配合margin:auto(一定要给.son宽高) .father {position: relative;height: 300px; } .son {position: absolute;top: 0;right: 0;b…...

智能优化算法应用:基于鸡群算法3D无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用:基于鸡群算法3D无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用:基于鸡群算法3D无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.鸡群算法4.实验参数设定5.算法结果6.参考文献7.MA…...

Apollo配置发布原理解析

📫作者简介:小明java问道之路,2022年度博客之星全国TOP3,专注于后端、中间件、计算机底层、架构设计演进与稳定性建设优化,文章内容兼具广度、深度、大厂技术方案,对待技术喜欢推理加验证,就职于…...

TrustGeo论文问题理解

1、网络空间测绘中,如何理解地标? 在网络空间测绘中,地标可以理解为在互联网空间中具有明显特征和稳定性的实体,它们可以作为网络空间的基准点,用于定位和标识其他网络实体。地标通常是在网络空间中具有较高价值和影响…...

子查询在SQL中的应用和实践

作者:CSDN-川川菜鸟 在SQL中,子查询是一种强大的工具,用于解决复杂的数据查询问题。本文将深入探讨子查询的概念、类型、规则,并通过具体案例展示其在实际应用中的用途。 文章目录 子查询概念子查询的类型子查询的规则实际案例分析…...

C# Socket通信从入门到精通(14)——多个异步UDP客户端C#代码实现

前言: 在之前的文章C# Socket通信从入门到精通(13)——单个异步UDP客户端C#代码实现我介绍了单个异步Udp客户端的c#代码实现,但是有的时候,我们需要连接多个服务器,并且对于每个服务器,我们都有一些比如异步发送、异步接收的操作,那么这时候我们使用之前单个异步Udp客…...

【教3妹学编程-算法题】需要添加的硬币的最小数量

3妹:2哥2哥,你有没有看到新闻, 有人中了2.2亿彩票大奖! 2哥 : 看到了,2.2亿啊, 一生一世也花不完。 3妹:为啥我就中不了呢,不开心呀不开心。 2哥 : 得了吧,你又不买彩票&…...

【异常解决】SpringBoot + Maven 在 idea 下启动报错 Unable to start embedded Tomcat(已解决)

Unable to start embedded Tomcat(已解决) 一、背景介绍二、原因分析2.1 网络上整理2.2 其他原因 三、解决方案 一、背景介绍 spring boot(v2.5.14) maven idea 启动项目 之前项目一直启动的好好的,都能正常运行。重启的时候突然就不能启…...

做题总结 707. 设计链表

做题总结 707. 设计链表 leetcode中单链表节点的默认定义我的尝试正确运行的代码(java) leetcode中单链表节点的默认定义 class ListNode {int val;ListNode next;//无参public ListNode() {}//有参:1public ListNode(int val) {this.val val;}//有参:…...

django实现--视图的使用

在 Django 中,视图是处理 Web 请求并返回 Web 响应的组件。Django 提供了两种主要类型的视图:基于函数的视图和基于类的视图。下面详细解释基于类的视图的实现方法、使用以及与基于函数的视图的异同。 基于类的视图的实现方法 继承 Django 的类视图基类…...

【dirty cred】fileManager [XXX]

前言 这应该不是个题,应该是佬为了测试 dirty cred 利用写的。但是环境有问题,测试最多只能向文件中写入 1024MB 的数据。所以竞争窗口太短了,但是似乎替换 credential obj 又是成功的了。感觉是环境的问题。 漏洞分析与利用 一次任意释放…...

线程按顺序循环执行

不瞒大家说,这是之前参加阿里一面的手写编程题,平时不刷题,这个当时花的时间比较多,虽然最后用了很喽比方法写出来了,自己还是很不满意。下面实话也是看了其他大佬的思路,今天重新练了下。 假设有3个线程,依次打印A、B、C,按顺序循环打印100次。 这个其实是线程通信,…...

C# 使用异步委托获取线程返回值

写在前面 异步委托主要用于解决 ThreadPool.QueueUserWorkItem 没有提供获取线程执行完成后的返回值问题。异步委托只能在.Net Framework 框架下使用,.Net Core中会报平台错误,而且使用Task.Result来获取返回值,可以达成同样的目的&#xff…...

生鲜蔬果展示预约小程序作用是什么

线下生鲜蔬果店非常多,对商家来说主要以同城生意为主,而在互联网电商的发展下,更多的商家会选择搭建私域商城进行多渠道的销售卖货和拓展,当然除了直接卖货外,还有产品纯展示或预约订购等需求。 但无论哪种模式&#…...

【C++】类与对象(下)

本文目录 1. 再谈构造函数1.1 构造函数体赋值1.2 初始化列表1.3 explicit关键字 2. static成员2.1 概念2.2 特性 3. 友元3.1 友元函数3.2 友元类 4. 内部类5. 匿名对象6. 拷贝对象时的一些编译器优化7. 再次理解类和对象 1. 再谈构造函数 1.1 构造函数体赋值 在创建对象时&am…...

一文了解 Go 方法

前言 在前面的 一文熟悉 Go 函数 文章中,介绍了 Go 函数的声明,函数的几种形式如匿名函数、闭包、基于函数的自定义类型和函数参数详解等,而本文将对方法进行介绍,方法的本质就是函数,介绍方法的同时也会顺带对比其与函…...

【Docker】vxlan的原理与实验

VXLAN(Virtual eXtensible Local Area Network,虚拟可扩展局域网),是一种虚拟化隧道通信技术。它是一种Overlay(覆盖网络)技术,通过三层的网络来搭建虚拟的二层网络。 VXLAN介绍 VXLAN是在底层…...

广度(宽度)优先搜素——层层递进

分析算法及题目 完整代码实现 广度优先搜索(Breadth-First Search,BFS)是一种图和树的遍历算法,与深度优先搜索相对应。BFS从起始节点开始,首先访问起始节点,然后逐层地访问其邻居节点,直到达到…...

设计模式——建造者模式(创建型)

引言 生成器模式是一种创建型设计模式, 使你能够分步骤创建复杂对象。 该模式允许你使用相同的创建代码生成不同类型和形式的对象。 问题 假设有这样一个复杂对象, 在对其进行构造时需要对诸多成员变量和嵌套对象进行繁复的初始化工作。 这些初始化代码…...

​getopt --- C 风格的命令行选项解析器​

源代码: Lib/getopt.py 备注 getopt 模块是一个命令行选项解析器,其 API 设计会让 C getopt() 函数的用户感到熟悉。 不熟悉 C getopt() 函数或者希望写更少代码并获得更完善帮助和错误消息的用户应当考虑改用 argparse 模块。 此模块可协助脚本解析 sys.argv 中的…...

Mysql大数据量删除

Mysql大数据量删除 在一些操作中,可能需要清理一下积压的数据,如果数据量小的话自然没有问题,但是如果是个大数据量的问题,那么就该考虑一个合适的办法了。 在清理大数据量的时候需要考虑是清理部分数据还是清理所有数据&#xf…...

【python中类的介绍】

python中类的介绍 在Python中,定义类需要使用关键字 class类名通常使用大写字母开头,举例: class MyClass:pass解释:定义了一个MyClass的空类。 1、python中类定义 “”" 类中可以定义属性和方法。 1、属性是类的数据成…...

PO模式在selenium自动化测试框架有什么好处

PO模式是在UI自动化测试过程当中使用非常频繁的一种设计模式,使用这种模式后,可以有效的提升代码的复用能力,并且让自动化测试代码维护起来更加方便。 PO模式的全称叫page object model(POM),有时候叫做 p…...

智能优化算法应用:基于斑马算法无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用:基于斑马算法无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用:基于斑马算法无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.斑马算法4.实验参数设定5.算法结果6.参考文献7.MATLAB…...

deepface:实现人脸的识别和分析

deepface介绍 deepface能够实现的功能 人脸检测:deepface 可以在图像中检测出人脸的位置,为后续的人脸识别任务提供基础。 人脸对齐:为了提高识别准确性,deepface 会将检测到的人脸进行对齐操作,消除姿态、光照和表…...

Pytorch当中nn.Identity()层的作用

在深度学习中,nn.Identity() 是 PyTorch 中的一个层(layer)。它实际上是一个恒等映射,不对输入进行任何变换或操作,只是简单地将输入返回作为输出。 通常在神经网络中,各种层(比如全连接层、卷…...