当前位置: 首页 > news >正文

数据挖掘目标(Kaggle Titanic 生存测试)

import numpy as np 
import pandas as pd
import matplotlib.pyplot as plt 
import seaborn as sns

1.数据导入

In [2]:

train_data = pd.read_csv(r'../老师文件/train.csv') 
test_data = pd.read_csv(r'../老师文件/test.csv')
labels = pd.read_csv(r'../老师文件/label.csv')['Survived'].tolist()

In [3]:

train_data.head()

Out[3]:

PassengerIdSurvivedPclassNameSexAgeSibSpParchTicketFareCabinEmbarked
0103Braund, Mr. Owen Harrismale22.010A/5 211717.2500NaNS
1211Cumings, Mrs. John Bradley (Florence Briggs Th...female38.010PC 1759971.2833C85C
2313Heikkinen, Miss. Lainafemale26.000STON/O2. 31012827.9250NaNS
3411Futrelle, Mrs. Jacques Heath (Lily May Peel)female35.01011380353.1000C123S
4503Allen, Mr. William Henrymale35.0003734508.0500NaNS

2.数据预处理

In [4]:

train_data.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 12 columns):#   Column       Non-Null Count  Dtype  
---  ------       --------------  -----  0   PassengerId  891 non-null    int64  1   Survived     891 non-null    int64  2   Pclass       891 non-null    int64  3   Name         891 non-null    object 4   Sex          891 non-null    object 5   Age          714 non-null    float646   SibSp        891 non-null    int64  7   Parch        891 non-null    int64  8   Ticket       891 non-null    object 9   Fare         891 non-null    float6410  Cabin        204 non-null    object 11  Embarked     889 non-null    object 
dtypes: float64(2), int64(5), object(5)
memory usage: 83.7+ KB

In [5]:

test_data['Survived'] = 0
concat_data = train_data.append(test_data)
C:\Users\Administrator\AppData\Local\Temp\ipykernel_5876\2851212731.py:2: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.concat_data = train_data.append(test_data)

In [6]:

#1) replace the missing value with 'U0'
train_data['Cabin'] = train_data.Cabin.fillna('U0')
#2) replace the missing value with '0' and the existing value with '1' 
train_data.loc[train_data.Cabin.notnull(),'Cabin'] =  '1' 
train_data.loc[train_data.Cabin.isnull(),'Cabin'] =  '0'

In [7]:

grid = sns.FacetGrid(train_data[['Age','Survived']],'Survived' ) 
grid.map(plt.hist, 'Age', bins = 20) 
plt.show( )
C:\Users\Administrator\anaconda3\lib\site-packages\seaborn\_decorators.py:36: FutureWarning: Pass the following variable as a keyword arg: row. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.warnings.warn(

In [8]:

from sklearn.ensemble import RandomForestRegressorconcat_data['Fare'] = concat_data.Fare.fillna(50)
concat_df = concat_data[['Age', 'Fare', 'Pclass','Survived']] 
train_df_age = concat_df.loc[concat_data['Age'].notnull()] 
predict_df_age = concat_df.loc[concat_data['Age'].isnull()] 
X=train_df_age.values[:,1:] 
Y= train_df_age.values[:,0]
RFR = RandomForestRegressor(n_estimators=1000,n_jobs=-1) 
RFR.fit(X,Y)
predict_ages = RFR.predict(predict_df_age.values[:,1:])
concat_data.loc[concat_data.Age.isnull(),'Age'] = predict_ages

In [9]:

sex_dummies = pd.get_dummies(concat_data.Sex)concat_data.drop('Sex',axis=1,inplace=True) 
concat_data = concat_data.join(sex_dummies)

In [10]:

from sklearn.preprocessing import StandardScalerconcat_data['Age'] = StandardScaler().fit_transform(concat_data.Age.values.reshape(-1,1))

In [11]:

concat_data['Fare'] = pd.qcut(concat_data.Fare,5)
concat_data['Fare'] = pd.factorize(concat_data.Fare)[0]

In [12]:

concat_data.drop(['PassengerId'],axis = 1,inplace = True)

相关文章:

数据挖掘目标(Kaggle Titanic 生存测试)

import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns1.数据导入 In [2]: train_data pd.read_csv(r../老师文件/train.csv) test_data pd.read_csv(r../老师文件/test.csv) labels pd.read_csv(r../老师文件/label.csv)[Su…...

【Vue】router.push用法实现路由跳转

目录 router.push用法 在Login.vue中 在Register.vue中 ​ 上一篇&#xff1a;登录与注册界面的制作 https://blog.csdn.net/m0_67930426/article/details/134895214?spm1001.2014.3001.5502 制作了登录与注册界面&#xff0c;并介绍了相关表单元素即属性的用法 在登录页面…...

设计原则 | 接口隔离原则

一、接口隔离原则 1、原理 客户端不应该依赖它不需要的接口&#xff0c;即一个类对另一个类的依赖应该建立在最小的接口上。如果强迫客户端依赖于那些它们不使用的接口&#xff0c;那么客户端就面临着这个未使用的接口的改变所带来的变更&#xff0c;这无意间导致了客户程序之…...

maui 调用文心一言开发的聊天APP 3

主要是对代码进行了优化 上一个版本写死了帐号跟密码 &#xff0c;这一个帐本有户可以直接设置对相关的key以及secret如果设置错时&#xff0c;在聊天中也会返回提示。注册帐号时同时也设置了key及secrete升级到了net.8.0导出APK&#xff0c;上一个版本是导出abb.解决了变型问…...

鸿蒙开发 - ohpm安装第三方库

前端开发难免使用第三方库&#xff0c;鸿蒙亦是如此&#xff0c;在使用 DevEco Studio 开发工具时&#xff0c;如何引入第三方库呢&#xff1f;操作步骤如下&#xff0c;假设你使用的是MacOS&#xff0c;假设你已经创建了了一个项目&#xff1a; 一、配置 HTTP Proxy 在打开了…...

[C++] new和delete

使用new时调用构造函数使用delete时调用析构函数 构造函数 使用new动态分配内存时&#xff0c;如果分配的是基本类型的内存&#xff0c;则不会调用构造函数。如果分配的是自定义类型的内存&#xff0c;则会调用构造函数进行对象的初始化。 例如&#xff1a; int* pInt new…...

OpenVINS学习2——VIRAL数据集eee01.bag运行

前言 周末休息了两天&#xff0c;接着做上周五那个VIRAL数据集没有运行成功的工作。现在的最新OpenVINS需要重新写配置文件&#xff0c;不像之前那样都写在launch里&#xff0c;因此需要根据数据集情况配置好estimator_config.yaml还有两个标定参数文件。 VIRAL数据集 VIRAL…...

jemeter,断言:响应断言、Json断言

一、响应断言 接口A请求正常返回值如下&#xff1a; {"status": 10013, "message": "user sign timeout"} 在该接口下创建【响应断言】元件&#xff0c;配置如下&#xff1a; 若断言成功&#xff0c;则查看结果树的接口显示绿色&#xff0c;若…...

【vue实战项目】通用管理系统:信息列表,信息的编辑和删除

本文为博主的vue实战小项目系列中的第七篇&#xff0c;很适合后端或者才入门的小伙伴看&#xff0c;一个前端项目从0到1的保姆级教学。前面的内容&#xff1a; 【vue实战项目】通用管理系统&#xff1a;登录页-CSDN博客 【vue实战项目】通用管理系统&#xff1a;封装token操作…...

基于FPGA的视频接口之高速IO(光纤)

简介 对于高速IO口配置光纤,现在目前大部分开发板都有配置,且也有说明,在此根据自己的工作经验以及对于各开发板的说明归纳 通过高速IO接口,以及硬件配置,可以实现对于光纤的收发功能,由于GTX的速率在500Mbs到10Gbps之间,但通道高速io可配置光纤10G硬件,物理通完成,则…...

HTML实现页面

<!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>工商银行电子汇款单</title> </head> &…...

回归预测 | MATLAB实现IWOA-LSTM改进鲸鱼算法算法优化长短期记忆神经网络的数据回归预测(多指标,多图)

回归预测 | MATLAB实现IWOA-LSTM改进鲸鱼算法算法优化长短期记忆神经网络的数据回归预测&#xff08;多指标&#xff0c;多图&#xff09; 目录 回归预测 | MATLAB实现IWOA-LSTM改进鲸鱼算法算法优化长短期记忆神经网络的数据回归预测&#xff08;多指标&#xff0c;多图&#…...

鸿蒙开发之状态管理@State

1、视图数据双向绑定 鸿蒙开发采用的声明式UI&#xff0c;利用状态驱动UI的更新。其中State被称作装饰器&#xff0c;是一种状态管理的方式。 状态&#xff1a;指的是被装饰器装饰的驱动视图更新的数据。 视图&#xff1a;是指用户看到的UI渲染出来的界面。 之所以成为双向…...

redis基本用法学习(主要数据类型)

redis官网教程中介绍有三种方式连接redis&#xff1a;命令行、gui工具和编程连接&#xff1a;   命令行方式主要是在命令行中输入redis-cli后&#xff0c;通过命令方式与redis服务进行交互&#xff0c;支持两种模式&#xff1a;REPL模式&#xff08;简单的交互式的编程环境&a…...

低代码:美味膳食或垃圾食品

低代码开发是近年来迅速崛起的软件开发方法&#xff0c;让编写应用程序变得更快、更简单。有人说它是美味的膳食&#xff0c;让开发过程高效而满足&#xff0c;但也有人质疑它是垃圾食品&#xff0c;缺乏定制性与深度。你认为低代码到底是美味的膳食还是垃圾食品呢&#xff0c;…...

设计模式—观察者模式

观察者模式&#xff08;Observer Pattern&#xff09;是一种行为型设计模式&#xff0c;它定义了一种一对多的依赖关系&#xff0c;使得当一个对象的状态发生变化时&#xff0c;所有依赖于它的对象都会得到通知并自动更新。 在观察者模式中&#xff0c;有两个核心角色&#xf…...

Java_EasyExcel_导入_导出Java-js

easyExcel导入 从easyexcel官网中拷贝过来&#xff0c;使用到的&#xff0c;这是使用监听器的方法。 EasyExcel.read(file.getInputStream(), BaseStoreDataExcelVo.class, new ReadListener<BaseStoreDataExcelVo>() {/*** 单次缓存的数据量*/public static final int…...

循环神经网络-RNN记忆能力实验 [HBU]

目录 一、循环神经网络 二、循环神经网络的记忆能力实验 三、数据集构建 数据集的构建函数 加载数据并进行数据划分 构造Dataset类 四、模型构建 嵌入层 SRN层 五、模型训练 训练指定长度的数字预测模型 多组训练 损失曲线展示 六、模型评价 参考《神经网络与深度…...

P1044 [NOIP2003 普及组] 栈——卡特兰数

传送门&#xff1a; P1044 [NOIP2003 普及组] 栈 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn)https://www.luogu.com.cn/problem/P1044 公式一&#xff1a;递推式(注意开 long long &#xff0c;然后 先乘完再除&#xff0c;防止下取整&#xff09; typedef long long ll;…...

9:00面试,9:06就出来了,问的问题有点变态。。。

从小厂出来&#xff0c;没想到在另一家公司又寄了。 到这家公司开始上班&#xff0c;加班是每天必不可少的&#xff0c;看在钱给的比较多的份上&#xff0c;就不太计较了。没想到12月一纸通知&#xff0c;所有人不准加班&#xff0c;加班费不仅没有了&#xff0c;薪资还要降40…...

龙虎榜——20250610

上证指数放量收阴线&#xff0c;个股多数下跌&#xff0c;盘中受消息影响大幅波动。 深证指数放量收阴线形成顶分型&#xff0c;指数短线有调整的需求&#xff0c;大概需要一两天。 2025年6月10日龙虎榜行业方向分析 1. 金融科技 代表标的&#xff1a;御银股份、雄帝科技 驱动…...

Lombok 的 @Data 注解失效,未生成 getter/setter 方法引发的HTTP 406 错误

HTTP 状态码 406 (Not Acceptable) 和 500 (Internal Server Error) 是两类完全不同的错误&#xff0c;它们的含义、原因和解决方法都有显著区别。以下是详细对比&#xff1a; 1. HTTP 406 (Not Acceptable) 含义&#xff1a; 客户端请求的内容类型与服务器支持的内容类型不匹…...

基于FPGA的PID算法学习———实现PID比例控制算法

基于FPGA的PID算法学习 前言一、PID算法分析二、PID仿真分析1. PID代码2.PI代码3.P代码4.顶层5.测试文件6.仿真波形 总结 前言 学习内容&#xff1a;参考网站&#xff1a; PID算法控制 PID即&#xff1a;Proportional&#xff08;比例&#xff09;、Integral&#xff08;积分&…...

多场景 OkHttpClient 管理器 - Android 网络通信解决方案

下面是一个完整的 Android 实现&#xff0c;展示如何创建和管理多个 OkHttpClient 实例&#xff0c;分别用于长连接、普通 HTTP 请求和文件下载场景。 <?xml version"1.0" encoding"utf-8"?> <LinearLayout xmlns:android"http://schemas…...

3403. 从盒子中找出字典序最大的字符串 I

3403. 从盒子中找出字典序最大的字符串 I 题目链接&#xff1a;3403. 从盒子中找出字典序最大的字符串 I 代码如下&#xff1a; class Solution { public:string answerString(string word, int numFriends) {if (numFriends 1) {return word;}string res;for (int i 0;i &…...

laravel8+vue3.0+element-plus搭建方法

创建 laravel8 项目 composer create-project --prefer-dist laravel/laravel laravel8 8.* 安装 laravel/ui composer require laravel/ui 修改 package.json 文件 "devDependencies": {"vue/compiler-sfc": "^3.0.7","axios": …...

uniapp手机号一键登录保姆级教程(包含前端和后端)

目录 前置条件创建uniapp项目并关联uniClound云空间开启一键登录模块并开通一键登录服务编写云函数并上传部署获取手机号流程(第一种) 前端直接调用云函数获取手机号&#xff08;第三种&#xff09;后台调用云函数获取手机号 错误码常见问题 前置条件 手机安装有sim卡手机开启…...

Ubuntu系统多网卡多相机IP设置方法

目录 1、硬件情况 2、如何设置网卡和相机IP 2.1 万兆网卡连接交换机&#xff0c;交换机再连相机 2.1.1 网卡设置 2.1.2 相机设置 2.3 万兆网卡直连相机 1、硬件情况 2个网卡n个相机 电脑系统信息&#xff0c;系统版本&#xff1a;Ubuntu22.04.5 LTS&#xff1b;内核版本…...

嵌入式学习之系统编程(九)OSI模型、TCP/IP模型、UDP协议网络相关编程(6.3)

目录 一、网络编程--OSI模型 二、网络编程--TCP/IP模型 三、网络接口 四、UDP网络相关编程及主要函数 ​编辑​编辑 UDP的特征 socke函数 bind函数 recvfrom函数&#xff08;接收函数&#xff09; sendto函数&#xff08;发送函数&#xff09; 五、网络编程之 UDP 用…...

【UE5 C++】通过文件对话框获取选择文件的路径

目录 效果 步骤 源码 效果 步骤 1. 在“xxx.Build.cs”中添加需要使用的模块 &#xff0c;这里主要使用“DesktopPlatform”模块 2. 添加后闭UE编辑器&#xff0c;右键点击 .uproject 文件&#xff0c;选择 "Generate Visual Studio project files"&#xff0c;重…...