C语言—每日选择题—Day45
第一题
1. 以下选项中,对基本类型相同的指针变量不能进行运算的运算符是()
A:+
B:-
C:=
D:==
答案及解析 A
A:错误,指针不可以相加,因为指针相加可能发生越界,所以是不允许的;
B:正确,指针相减 是用来求里面的同数据类型的数据个数
C:指针允许被赋值
D:判断指针的相等,也就是看地址一不一样,地址相同了,那里面的变量也是一样的;
第二题
2. 下面程序段的输出结果为( )
int a, b;
b = (a = 3*5, a*4, a*5);
printf("%d",b);
A:60
B:75
C:65
D:无确定值
答案及解析 B
本题考查的是一个逗号表达式,逗号表达式是依次计算逗号之间的式子,但是逗号表达式的结果为里面最后一个式子的结果;
所以(a = 3*5 , a * 4 , a * 5)的结果分别为 (1,60,75)
要记住a在第一个表达式已经被赋值,所以后续a都是这个值
最后答案为75
第三题
3. 下列表达式与 ++*p 结果相同的是()
int a[]= {1,2,3,4,5};
int *p = a;
A:*++p
B:a[0]
C:a[0]++
D:*p++
答案及解析 A
本题考查的是优先级和指针的用法
虽然 前置++ 的优先级高于 * 的,但是前置++的结合性是从右到左的,必须先计算出左操作数的值,不能越过 * ,所以先算 *p = 1;之后再前置++,最后++*p = 2;
相关博客:C语言操作符优先级表格(建议收藏,每次看一下)-CSDN博客
A:*++p,前置++的优先级高于 * ,前置++返回++之后的值,所以*++p 相当于 *(p + 1) = 2;
B:a[ 0 ] = 1
C:a[ 0 ]++,后置++,返回的是++之前的值,所以a[ 0 ]++ 表达式的值为1;
D:*p++,后置++ 优先级高于 * ,但是后置++,是返回当前的值,那这个表达式的p的地址依旧是a,所以就相当于*p,*p = *a = 1;
第四题
4. int *p[4] 与选择项中的() 等价
A:int p[4]
B:int *p
C:int *(p[4])
D:int (*p)[4]
答案及解析 C
首先题目中的 int *p [4] 的 [ ]的优先级高于 *
所以p先跟[4]结合,形成数组,数组中的每个元素都是int *类型,这就是一个指针数组;
A:int p[ 4 ],整型数组;
B:int *p,整型指针;
C:int *(p[ 4 ])括号括起来了,是一个指针数组;
D:int (*p)[4]这是一个指针,指向的是一个数组,是数组指针;
第五题(细品!!!!!)
5. 假设函数原型和变量说明如下,调用非法的是()
void f3(int(*p)[4]);
int a[4]={1,2,3,4},
int b[3][4]={{1,2,3,4},{5,6,7,8},{9,10,11,12}};
A:f3(&a);
B:f3(b[1]);
C:f3(&b[1]);
D:f3(b);
答案及解析 B
其实函数传参数,就是要类型匹配;本题考查的就是那些事数组指针;
因为int (*p)[4],是一个指针数组的指针;而一个指针是如何才能指向整个数组的呢?一定是存的数组的地址,也就是说p的类型其实是&数组名,&a,p就相当于一个二级指针是int**,但是不同的是p还必须要有数组个数的匹配;
A:&a,a是数组名,&a就是表示整个数组的地址,所以和f3的参数类型匹配;
B:b[1],b是一个二维数组,那二维数组的行名,就是相当于每行的数组名,因为二维数组其实就是一维数组的数组,那每行就相当于一个一维数组,那行名不就是我们一维数组的数组名吗,所以b[1]就是数组名,数组名是首元素地址,b[1]这行的首元素是b[1][0],地址类型就是int*,跟我们的p类型不匹配
C:&b[1]才是对的,是整个数组的地址;
D:b是数组名,二维数组名,也就是二维数组的首元素的地址,二维数组的首元素就是整个的一维数组,所以b的数据类型其实就是一维数组的地址,和p类型匹配;因为你想想,一维数组的首元素是单个的数,而二维数组却是一维数组的数组,那二维数组的元素就必须是一个一个的一维数组!

相关文章:
C语言—每日选择题—Day45
第一题 1. 以下选项中,对基本类型相同的指针变量不能进行运算的运算符是() A: B:- C: D: 答案及解析 A A:错误,指针不可以相加,因为指针相加可能发生越界&…...
音乐制作软件Studio One mac软件特点
Studio One mac是一款专业的音乐制作软件,由美国PreSonus公司开发。该软件提供了全面的音频编辑和混音功能,包括录制、编曲、合成、采样等多种工具,可用于制作各种类型的音乐,如流行音乐、电子音乐、摇滚乐等。 Studio One mac软件…...
华为OD机试 - 会议室占用时间(Java JS Python C)
题目描述 现有若干个会议,所有会议共享一个会议室,用数组表示各个会议的开始时间和结束时间,格式为: [[会议1开始时间, 会议1结束时间], [会议2开始时间, 会议2结束时间]] 请计算会议室占用时间段。 输入描述 第一行输入一个整数 n,表示会议数量 之后输入n行,每行两个…...
Excel COUNT类函数使用
目录 一. COUNT二. COUNTA三. COUNTBLANK四. COUNTIF五. COUNTIFS 一. COUNT ⏹用于计算指定范围内包含数字的单元格数量。 基本语法 COUNT(value1, [value2], ...)✅统计A2到A7所有数字单元格的数量 ✅统计A2到A7,B2到B7的所有数字单元格的数量 二. COUNTA ⏹计…...
刷题学习记录(文件上传)
[GXYCTF 2019]BabyUpload 知识点:文件上传.htaccessMIME绕过 题目直接给题目标签提示文件上传的类型 思路:先上传.htaccess文件,在上传木马文件,最后蚁剑连接 上传.htaccess文件 再上传一个没有<?的shell 但是要把image/pn…...
接口管理——Swagger
Swagger是一个用于设计、构建和文档化API的工具集。它包括一系列工具,如Swagger Editor(用于编辑Swagger规范)、Swagger UI(用于可视化API文档)和Swagger Codegen(用于根据API定义生成客户端库、server stu…...
基于Python+WaveNet+MFCC+Tensorflow智能方言分类—深度学习算法应用(含全部工程源码)(三)
目录 前言引言总体设计系统整体结构图系统流程图 运行环境模块实现1. 数据预处理2. 模型构建1)定义模型结构2)优化损失函数 3. 模型训练及保存1)模型训练2)模型保存3)映射保存 相关其它博客工程源代码下载其它资料下载…...
(第5天)进阶 RHEL 7 安装单机 Oracle 19C NON-CDB 数据库
进阶 RHEL 7 安装单机 Oracle 19C NON-CDB 数据库(第5天) 真快,实战第 5 天了,我们来讲讲 19C 的数据库安装吧!19C 是未来几年 Oracle 数据库的大趋势,同样的作为长期稳定版,11GR2 在 2020 年 10 月份官方就宣布停止 Support 了,19C 将成为新的长期稳定版,并持续支持…...
AI自动生成代码工具
AI自动生成代码工具是一种利用人工智能技术来辅助或自动化软件开发过程中的编码任务的工具。这些工具使用机器学习和自然语言处理等技术,根据开发者的需求生成相应的源代码。以下是一些常见的AI自动生成代码工具,希望对大家有所帮助。北京木奇移动技术有…...
jmeter和postman的对比
1.创建接口用例集(没区别) Postman是Collections,Jmeter是线程组,没什么区别。 2.步骤的实现(有区别) Postman和jmeter都是创建http请求 区别1:postman请求的请求URL是一个整体,j…...
深度学习在人体动作识别领域的应用:开源工具、数据集资源及趋动云GPU算力不可或缺
人体动作识别检测是一种通过使用计算机视觉和深度学习技术,对人体姿态和动作进行实时监测和分析的技术。该技术旨在从图像或视频中提取有关人体姿态、动作和行为的信息,以便更深入地识别和理解人的活动。 人体动作识别检测的基本步骤包括: 数…...
科技提升安全,基于YOLOv6开发构建商超扶梯场景下行人安全行为姿态检测识别系统
在商超等人流量较为密集的场景下经常会报道出现一些行人在扶梯上摔倒、受伤等问题,随着AI技术的快速发展与不断普及,越来越多的商超、地铁等场景开始加装专用的安全检测预警系统,核心工作原理即使AI模型与摄像头图像视频流的实时计算…...
二叉树的最大深度
问题描述: 给定一个二叉树 root ,返回其最大深度。 二叉树的 最大深度 是指从根节点到最远叶子节点的最长路径上的节点数。 示例 1: 输入:root [3,9,20,null,null,15,7] 输出:3示例 2: 输入࿱…...
nginx配置正向代理支持https
操作系统版本: Alibaba Cloud Linux 3.2104 LTS 64位 nginx版本: nginx-1.25.3 1. 下载软件 切换目录 cd /server wget http://nginx.org/download/nginx-1.25.3.tar.gz 1.1解压 tar -zxvf nginx-1.25.3.tar.gz 1.2切换到源码所在目录…...
奥比中光 Femto Bolt相机ROS配置
机械臂手眼标定详解 作者: Herman Ye Auromix 测试环境: Ubuntu20.04/22.04 、ROS1 Noetic/ROS2 Humble、X86 PC/Jetson Orin、Kinect DK/Femto Bolt 更新日期: 2023/12/12 注1: Auromix 是一个机器人爱好者开源组织。 注2&#…...
scala表达式
1.8 表达式(重点) # 语句(statement):一段可执行的代码# 表达式(expression):一段可以被求值的代码,在Scala中一切都是表达式 - 表达式一般是一个语句块,可包含一条或者多条语句,多条语句使用“…...
uniapp,点击选中并改变颜色,第二次点击取消选中状态
一、效果图 二、代码实现 字符串的indexOf和数组的indexOf用法一致! arr.indexOf(item) 该方法返回某个元素在数组中的位置。若没检索到,则返回 -1。 关键代码:(通过:class绑定) :class"selectList.indexOf(sub.type) ! -1 ? right_ite…...
mmyolo的bbox_loss和检测bbox都是空
最近用mmyolo训练自己的数据集的时候发现训练的时候loss_bbox0,测试和eval的时候结果也全是空的,排除了数据集读取的问题,最后发现是config中自定义了自己的类别但是没有传给dataset。。。 简而言之,在自定义了数据集里的metainf…...
Linux——基本指令(二)
个人主页:日刷百题 系列专栏:〖C语言小游戏〗〖Linux〗〖数据结构〗 〖C语言〗 🌎欢迎各位→点赞👍收藏⭐️留言📝 写在前面: 紧接上一章,我们在理解接下来的命令之前,…...
渲染农场对工业产品渲染带来的意义与优势?
随着科技的进步,利用精细渲染图来呈现和推广工业设计的创新已成为行业标准。这些图像在产品研发、设计评审和营销阶段起着关键作用,同时对产品最终的成功也产生深远影响。然而,由于产品设计日渐复杂,制作渲染图的任务变得极具挑战…...
SCAU期末笔记 - 数据分析与数据挖掘题库解析
这门怎么题库答案不全啊日 来简单学一下子来 一、选择题(可多选) 将原始数据进行集成、变换、维度规约、数值规约是在以下哪个步骤的任务?(C) A. 频繁模式挖掘 B.分类和预测 C.数据预处理 D.数据流挖掘 A. 频繁模式挖掘:专注于发现数据中…...
定时器任务——若依源码分析
分析util包下面的工具类schedule utils: ScheduleUtils 是若依中用于与 Quartz 框架交互的工具类,封装了定时任务的 创建、更新、暂停、删除等核心逻辑。 createScheduleJob createScheduleJob 用于将任务注册到 Quartz,先构建任务的 JobD…...
智能仓储的未来:自动化、AI与数据分析如何重塑物流中心
当仓库学会“思考”,物流的终极形态正在诞生 想象这样的场景: 凌晨3点,某物流中心灯火通明却空无一人。AGV机器人集群根据实时订单动态规划路径;AI视觉系统在0.1秒内扫描包裹信息;数字孪生平台正模拟次日峰值流量压力…...
vue3+vite项目中使用.env文件环境变量方法
vue3vite项目中使用.env文件环境变量方法 .env文件作用命名规则常用的配置项示例使用方法注意事项在vite.config.js文件中读取环境变量方法 .env文件作用 .env 文件用于定义环境变量,这些变量可以在项目中通过 import.meta.env 进行访问。Vite 会自动加载这些环境变…...
HDFS分布式存储 zookeeper
hadoop介绍 狭义上hadoop是指apache的一款开源软件 用java语言实现开源框架,允许使用简单的变成模型跨计算机对大型集群进行分布式处理(1.海量的数据存储 2.海量数据的计算)Hadoop核心组件 hdfs(分布式文件存储系统)&a…...
在树莓派上添加音频输入设备的几种方法
在树莓派上添加音频输入设备可以通过以下步骤完成,具体方法取决于设备类型(如USB麦克风、3.5mm接口麦克风或HDMI音频输入)。以下是详细指南: 1. 连接音频输入设备 USB麦克风/声卡:直接插入树莓派的USB接口。3.5mm麦克…...
Java求职者面试指南:Spring、Spring Boot、Spring MVC与MyBatis技术解析
Java求职者面试指南:Spring、Spring Boot、Spring MVC与MyBatis技术解析 一、第一轮基础概念问题 1. Spring框架的核心容器是什么?它的作用是什么? Spring框架的核心容器是IoC(控制反转)容器。它的主要作用是管理对…...
Python 高效图像帧提取与视频编码:实战指南
Python 高效图像帧提取与视频编码:实战指南 在音视频处理领域,图像帧提取与视频编码是基础但极具挑战性的任务。Python 结合强大的第三方库(如 OpenCV、FFmpeg、PyAV),可以高效处理视频流,实现快速帧提取、压缩编码等关键功能。本文将深入介绍如何优化这些流程,提高处理…...
区块链技术概述
区块链技术是一种去中心化、分布式账本技术,通过密码学、共识机制和智能合约等核心组件,实现数据不可篡改、透明可追溯的系统。 一、核心技术 1. 去中心化 特点:数据存储在网络中的多个节点(计算机),而非…...
Python异步编程:深入理解协程的原理与实践指南
💝💝💝欢迎莅临我的博客,很高兴能够在这里和您见面!希望您在这里可以感受到一份轻松愉快的氛围,不仅可以获得有趣的内容和知识,也可以畅所欲言、分享您的想法和见解。 持续学习,不断…...
