当前位置: 首页 > news >正文

营销型网站管理方案/5g站长工具查询

营销型网站管理方案,5g站长工具查询,做网站白云,微信手机网站三合一在商超等人流量较为密集的场景下经常会报道出现一些行人在扶梯上摔倒、受伤等问题,随着AI技术的快速发展与不断普及,越来越多的商超、地铁等场景开始加装专用的安全检测预警系统,核心工作原理即使AI模型与摄像头图像视频流的实时计算&#xf…

在商超等人流量较为密集的场景下经常会报道出现一些行人在扶梯上摔倒、受伤等问题,随着AI技术的快速发展与不断普及,越来越多的商超、地铁等场景开始加装专用的安全检测预警系统,核心工作原理即使AI模型与摄像头图像视频流的实时计算,通过对行为扶梯上的行为进行实时检测识别来对出现的危险行为进行快速预警响应避免后续出现严重的后果。本文的主要目的就是想要基于商超扶梯场景来开发构建行人安全行为检测识别系统,探索分析基于AI科技提升安全保障的可行性,本文是AI助力商超扶梯等场景安全提升的第四篇文章,前文系列如下:

《科技提升安全,基于SSD开发构建商超扶梯场景下行人安全行为姿态检测识别系统》
https://blog.csdn.net/Together_CZ/article/details/134892776《科技提升安全,基于YOLOv3开发构建商超扶梯场景下行人安全行为姿态检测识别系统》 
https://blog.csdn.net/Together_CZ/article/details/134892866《科技提升安全,基于YOLOv4开发构建商超扶梯场景下行人安全行为姿态检测识别系统》
https://blog.csdn.net/Together_CZ/article/details/134893058

首先看下实例效果:

简单看下实例数据情况:

本文是选择的是YOLOv5算法模型来完成本文项目的开发构建。相较于前两代的算法模型,YOLOv5可谓是集大成者,达到了SOTA的水平,下面简单对v3-v5系列模型的演变进行简单介绍总结方便对比分析学习:
【YOLOv3】
YOLOv3(You Only Look Once version 3)是一种基于深度学习的快速目标检测算法,由Joseph Redmon等人于2018年提出。它的核心技术原理和亮点如下:
技术原理:
YOLOv3采用单个神经网络模型来完成目标检测任务。与传统的目标检测方法不同,YOLOv3将目标检测问题转化为一个回归问题,通过卷积神经网络输出图像中存在的目标的边界框坐标和类别概率。
YOLOv3使用Darknet-53作为骨干网络,用来提取图像特征。检测头(detection head)负责将提取的特征映射到目标边界框和类别预测。
亮点:
YOLOv3在保持较高的检测精度的同时,能够实现非常快的检测速度。相较于一些基于候选区域的目标检测算法(如Faster R-CNN、SSD等),YOLOv3具有更高的实时性能。
YOLOv3对小目标和密集目标的检测效果较好,同时在大目标的检测精度上也有不错的表现。
YOLOv3具有较好的通用性和适应性,适用于各种目标检测任务,包括车辆检测、行人检测等。
【YOLOv4】
YOLOv4是一种实时目标检测模型,它在速度和准确度上都有显著的提高。相比于其前一代模型YOLOv3,YOLOv4在保持较高的检测精度的同时,还提高了检测速度。这主要得益于其采用的CSPDarknet53网络结构,主要有三个方面的优点:增强CNN的学习能力,使得在轻量化的同时保持准确性;降低计算瓶颈;降低内存成本。YOLOv4的目标检测策略采用的是“分而治之”的策略,将一张图片平均分成7×7个网格,每个网格分别负责预测中心点落在该网格内的目标。这种方法不需要额外再设计一个区域提议网络(RPN),从而减少了训练的负担。然而,尽管YOLOv4在许多方面都表现出色,但它仍然存在一些不足。例如,小目标检测效果较差。此外,当需要在资源受限的设备上部署像YOLOv4这样的大模型时,模型压缩是研究人员重新调整较大模型所需资源消耗的有用工具。
优点:
速度:YOLOv4 保持了 YOLO 算法一贯的实时性,能够在检测速度和精度之间实现良好的平衡。
精度:YOLOv4 采用了 CSPDarknet 和 PANet 两种先进的技术,提高了检测精度,特别是在检测小型物体方面有显著提升。
通用性:YOLOv4 适用于多种任务,如行人检测、车辆检测、人脸检测等,具有较高的通用性。
模块化设计:YOLOv4 中的组件可以方便地更换和扩展,便于进一步优化和适应不同场景。
缺点:
内存占用:YOLOv4 模型参数较多,因此需要较大的内存来存储和运行模型,这对于部分硬件设备来说可能是一个限制因素。
训练成本:YOLOv4 模型需要大量的训练数据和计算资源才能达到理想的性能,这可能导致训练成本较高。
精确度与速度的权衡:虽然 YOLOv4 在速度和精度之间取得了较好的平衡,但在极端情况下,例如检测高速移动的物体或复杂背景下的物体时,性能可能会受到影响。
误检和漏检:由于 YOLOv4 采用单一网络对整个图像进行预测,可能会导致一些误检和漏检现象。

【YOLOv5】
YOLOv5是一种快速、准确的目标检测模型,由Glen Darby于2020年提出。相较于前两代模型,YOLOv5集成了众多的tricks达到了性能的SOTA:
技术原理:
YOLOv5同样采用单个神经网络模型来完成目标检测任务,但采用了新的神经网络架构,融合了领先的轻量级模型设计理念。YOLOv5使用较小的骨干网络和新的检测头设计,以实现更快的推断速度,并在不降低精度的前提下提高目标检测的准确性。
亮点:
YOLOv5在模型结构上进行了改进,引入了更先进的轻量级网络架构,因此在速度和精度上都有所提升。
YOLOv5支持更灵活的模型大小和预训练选项,可以根据任务需求选择不同大小的模型,同时提供丰富的数据增强扩展、模型集成等方法来提高检测精度。YOLOv5通过使用更简洁的代码实现,提高了模型的易用性和可扩展性。

训练数据配置文件如下:

# Dataset
path: ./dataset
train:- images/train
val:- images/test
test:- images/test# Classes
names:0: bow1: down2: shake3: up

实验截止目前,本文将YOLOv5系列五款不同参数量级的模型均进行了开发评测,接下来依次看下模型详情:

【yolov5n】

# YOLOv5 🚀 by Ultralytics, GPL-3.0 license# Parameters
nc: 4  # number of classes
depth_multiple: 0.33  # model depth multiple
width_multiple: 0.25  # layer channel multiple
anchors:- [10,13, 16,30, 33,23]  # P3/8- [30,61, 62,45, 59,119]  # P4/16- [116,90, 156,198, 373,326]  # P5/32# YOLOv5 v6.0 backbone
backbone:# [from, number, module, args][[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2[-1, 1, Conv, [128, 3, 2]],  # 1-P2/4[-1, 3, C3, [128]],[-1, 1, Conv, [256, 3, 2]],  # 3-P3/8[-1, 6, C3, [256]],[-1, 1, Conv, [512, 3, 2]],  # 5-P4/16[-1, 9, C3, [512]],[-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32[-1, 3, C3, [1024]],[-1, 1, SPPF, [1024, 5]],  # 9]# YOLOv5 v6.0 head
head:[[-1, 1, Conv, [512, 1, 1]],[-1, 1, nn.Upsample, [None, 2, 'nearest']],[[-1, 6], 1, Concat, [1]],  # cat backbone P4[-1, 3, C3, [512, False]],  # 13[-1, 1, Conv, [256, 1, 1]],[-1, 1, nn.Upsample, [None, 2, 'nearest']],[[-1, 4], 1, Concat, [1]],  # cat backbone P3[-1, 3, C3, [256, False]],  # 17 (P3/8-small)[-1, 1, Conv, [256, 3, 2]],[[-1, 14], 1, Concat, [1]],  # cat head P4[-1, 3, C3, [512, False]],  # 20 (P4/16-medium)[-1, 1, Conv, [512, 3, 2]],[[-1, 10], 1, Concat, [1]],  # cat head P5[-1, 3, C3, [1024, False]],  # 23 (P5/32-large)[[17, 20, 23], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)]

【yolov5s】

# YOLOv5 🚀 by Ultralytics, GPL-3.0 license# Parameters
nc: 4  # number of classes
depth_multiple: 0.33  # model depth multiple
width_multiple: 0.50  # layer channel multiple
anchors:- [10,13, 16,30, 33,23]  # P3/8- [30,61, 62,45, 59,119]  # P4/16- [116,90, 156,198, 373,326]  # P5/32#Backbone
backbone:# [from, number, module, args][[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2[-1, 1, Conv, [128, 3, 2]],  # 1-P2/4[-1, 3, C3, [128]],[-1, 1, Conv, [256, 3, 2]],  # 3-P3/8[-1, 6, C3, [256]],[-1, 1, Conv, [512, 3, 2]],  # 5-P4/16[-1, 9, C3, [512]],[-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32[-1, 3, C3, [1024]],[-1, 1, SPPF, [1024, 5]],  # 9]#Head
head:[[-1, 1, Conv, [512, 1, 1]],[-1, 1, nn.Upsample, [None, 2, 'nearest']],[[-1, 6], 1, Concat, [1]],  # cat backbone P4[-1, 3, C3, [512, False]],  # 13[-1, 1, Conv, [256, 1, 1]],[-1, 1, nn.Upsample, [None, 2, 'nearest']],[[-1, 4], 1, Concat, [1]],  # cat backbone P3[-1, 3, C3, [256, False]],  # 17 (P3/8-small)[-1, 1, Conv, [256, 3, 2]],[[-1, 14], 1, Concat, [1]],  # cat head P4[-1, 3, C3, [512, False]],  # 20 (P4/16-medium)[-1, 1, Conv, [512, 3, 2]],[[-1, 10], 1, Concat, [1]],  # cat head P5[-1, 3, C3, [1024, False]],  # 23 (P5/32-large)[[17, 20, 23], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)]

【yolov5m】

# YOLOv5 🚀 by Ultralytics, GPL-3.0 license# Parameters
nc: 4  # number of classes
depth_multiple: 0.67  # model depth multiple
width_multiple: 0.75  # layer channel multiple
anchors:- [10,13, 16,30, 33,23]  # P3/8- [30,61, 62,45, 59,119]  # P4/16- [116,90, 156,198, 373,326]  # P5/32# YOLOv5 v6.0 backbone
backbone:# [from, number, module, args][[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2[-1, 1, Conv, [128, 3, 2]],  # 1-P2/4[-1, 3, C3, [128]],[-1, 1, Conv, [256, 3, 2]],  # 3-P3/8[-1, 6, C3, [256]],[-1, 1, Conv, [512, 3, 2]],  # 5-P4/16[-1, 9, C3, [512]],[-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32[-1, 3, C3, [1024]],[-1, 1, SPPF, [1024, 5]],  # 9]# YOLOv5 v6.0 head
head:[[-1, 1, Conv, [512, 1, 1]],[-1, 1, nn.Upsample, [None, 2, 'nearest']],[[-1, 6], 1, Concat, [1]],  # cat backbone P4[-1, 3, C3, [512, False]],  # 13[-1, 1, Conv, [256, 1, 1]],[-1, 1, nn.Upsample, [None, 2, 'nearest']],[[-1, 4], 1, Concat, [1]],  # cat backbone P3[-1, 3, C3, [256, False]],  # 17 (P3/8-small)[-1, 1, Conv, [256, 3, 2]],[[-1, 14], 1, Concat, [1]],  # cat head P4[-1, 3, C3, [512, False]],  # 20 (P4/16-medium)[-1, 1, Conv, [512, 3, 2]],[[-1, 10], 1, Concat, [1]],  # cat head P5[-1, 3, C3, [1024, False]],  # 23 (P5/32-large)[[17, 20, 23], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)]

【yolov5l】

# YOLOv5 🚀 by Ultralytics, GPL-3.0 license# Parameters
nc: 4  # number of classes
depth_multiple: 1.0  # model depth multiple
width_multiple: 1.0  # layer channel multiple
anchors:- [10,13, 16,30, 33,23]  # P3/8- [30,61, 62,45, 59,119]  # P4/16- [116,90, 156,198, 373,326]  # P5/32# YOLOv5 v6.0 backbone
backbone:# [from, number, module, args][[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2[-1, 1, Conv, [128, 3, 2]],  # 1-P2/4[-1, 3, C3, [128]],[-1, 1, Conv, [256, 3, 2]],  # 3-P3/8[-1, 6, C3, [256]],[-1, 1, Conv, [512, 3, 2]],  # 5-P4/16[-1, 9, C3, [512]],[-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32[-1, 3, C3, [1024]],[-1, 1, SPPF, [1024, 5]],  # 9]# YOLOv5 v6.0 head
head:[[-1, 1, Conv, [512, 1, 1]],[-1, 1, nn.Upsample, [None, 2, 'nearest']],[[-1, 6], 1, Concat, [1]],  # cat backbone P4[-1, 3, C3, [512, False]],  # 13[-1, 1, Conv, [256, 1, 1]],[-1, 1, nn.Upsample, [None, 2, 'nearest']],[[-1, 4], 1, Concat, [1]],  # cat backbone P3[-1, 3, C3, [256, False]],  # 17 (P3/8-small)[-1, 1, Conv, [256, 3, 2]],[[-1, 14], 1, Concat, [1]],  # cat head P4[-1, 3, C3, [512, False]],  # 20 (P4/16-medium)[-1, 1, Conv, [512, 3, 2]],[[-1, 10], 1, Concat, [1]],  # cat head P5[-1, 3, C3, [1024, False]],  # 23 (P5/32-large)[[17, 20, 23], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)]

【yolov5x】

# YOLOv5 🚀 by Ultralytics, GPL-3.0 license# Parameters
nc: 4  # number of classes
depth_multiple: 1.33  # model depth multiple
width_multiple: 1.25  # layer channel multiple
anchors:- [10,13, 16,30, 33,23]  # P3/8- [30,61, 62,45, 59,119]  # P4/16- [116,90, 156,198, 373,326]  # P5/32# YOLOv5 v6.0 backbone
backbone:# [from, number, module, args][[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2[-1, 1, Conv, [128, 3, 2]],  # 1-P2/4[-1, 3, C3, [128]],[-1, 1, Conv, [256, 3, 2]],  # 3-P3/8[-1, 6, C3, [256]],[-1, 1, Conv, [512, 3, 2]],  # 5-P4/16[-1, 9, C3, [512]],[-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32[-1, 3, C3, [1024]],[-1, 1, SPPF, [1024, 5]],  # 9]# YOLOv5 v6.0 head
head:[[-1, 1, Conv, [512, 1, 1]],[-1, 1, nn.Upsample, [None, 2, 'nearest']],[[-1, 6], 1, Concat, [1]],  # cat backbone P4[-1, 3, C3, [512, False]],  # 13[-1, 1, Conv, [256, 1, 1]],[-1, 1, nn.Upsample, [None, 2, 'nearest']],[[-1, 4], 1, Concat, [1]],  # cat backbone P3[-1, 3, C3, [256, False]],  # 17 (P3/8-small)[-1, 1, Conv, [256, 3, 2]],[[-1, 14], 1, Concat, [1]],  # cat head P4[-1, 3, C3, [512, False]],  # 20 (P4/16-medium)[-1, 1, Conv, [512, 3, 2]],[[-1, 10], 1, Concat, [1]],  # cat head P5[-1, 3, C3, [1024, False]],  # 23 (P5/32-large)[[17, 20, 23], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)]

在实验训练开发阶段,所有的模型均保持完全相同的参数设置,等待训练完成后,来整体进行评测对比分析。

【Precision曲线】
精确率曲线(Precision-Recall Curve)是一种用于评估二分类模型在不同阈值下的精确率性能的可视化工具。它通过绘制不同阈值下的精确率和召回率之间的关系图来帮助我们了解模型在不同阈值下的表现。
精确率(Precision)是指被正确预测为正例的样本数占所有预测为正例的样本数的比例。召回率(Recall)是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。
绘制精确率曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的精确率和召回率。
将每个阈值下的精确率和召回率绘制在同一个图表上,形成精确率曲线。
根据精确率曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
通过观察精确率曲线,我们可以根据需求确定最佳的阈值,以平衡精确率和召回率。较高的精确率意味着较少的误报,而较高的召回率则表示较少的漏报。根据具体的业务需求和成本权衡,可以在曲线上选择合适的操作点或阈值。
精确率曲线通常与召回率曲线(Recall Curve)一起使用,以提供更全面的分类器性能分析,并帮助评估和比较不同模型的性能。

【Recall曲线】
召回率曲线(Recall Curve)是一种用于评估二分类模型在不同阈值下的召回率性能的可视化工具。它通过绘制不同阈值下的召回率和对应的精确率之间的关系图来帮助我们了解模型在不同阈值下的表现。
召回率(Recall)是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。召回率也被称为灵敏度(Sensitivity)或真正例率(True Positive Rate)。
绘制召回率曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的召回率和对应的精确率。
将每个阈值下的召回率和精确率绘制在同一个图表上,形成召回率曲线。
根据召回率曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
通过观察召回率曲线,我们可以根据需求确定最佳的阈值,以平衡召回率和精确率。较高的召回率表示较少的漏报,而较高的精确率意味着较少的误报。根据具体的业务需求和成本权衡,可以在曲线上选择合适的操作点或阈值。
召回率曲线通常与精确率曲线(Precision Curve)一起使用,以提供更全面的分类器性能分析,并帮助评估和比较不同模型的性能。

【F1值曲线】
F1值曲线是一种用于评估二分类模型在不同阈值下的性能的可视化工具。它通过绘制不同阈值下的精确率(Precision)、召回率(Recall)和F1分数的关系图来帮助我们理解模型的整体性能。
F1分数是精确率和召回率的调和平均值,它综合考虑了两者的性能指标。F1值曲线可以帮助我们确定在不同精确率和召回率之间找到一个平衡点,以选择最佳的阈值。
绘制F1值曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的精确率、召回率和F1分数。
将每个阈值下的精确率、召回率和F1分数绘制在同一个图表上,形成F1值曲线。
根据F1值曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
F1值曲线通常与接收者操作特征曲线(ROC曲线)一起使用,以帮助评估和比较不同模型的性能。它们提供了更全面的分类器性能分析,可以根据具体应用场景来选择合适的模型和阈值设置。

【loss对比曲线】

整体对比分析不难发现:在本文我们自主构建的作物、杂草检测的数据集上五款不同参数量级的模型没有呈现出来断崖式的性能差异,纵向对比来看:n系列的模型性能最差,s系列次之,而m、l和x三个系列的模型则达到了相近的水平,结合推理速度来考虑的话实际项目中更加倾向于优先选择使用m系列的模型。

感兴趣的话都可以自行动手尝试下!

相关文章:

科技提升安全,基于YOLOv5系列模型【n/s/m/l/x】开发构建商超扶梯场景下行人安全行为姿态检测识别系统

在商超等人流量较为密集的场景下经常会报道出现一些行人在扶梯上摔倒、受伤等问题,随着AI技术的快速发展与不断普及,越来越多的商超、地铁等场景开始加装专用的安全检测预警系统,核心工作原理即使AI模型与摄像头图像视频流的实时计算&#xf…...

【网络安全】网络防护之旅 - 对称密码加密算法的实现

🌈个人主页:Sarapines Programmer🔥 系列专栏:《网络安全之道 | 数字征程》⏰墨香寄清辞:千里传信如电光,密码奥妙似仙方。 挑战黑暗剑拔弩张,网络战场誓守长。 目录 😈1. 初识网络安…...

鸿蒙arkTs Toast抽取 及使用

Toast抽取,创建一个Utils import promptAction from ohos.promptAction; import display from ohos.display; export function ToastUtils(msg:string){try {promptAction.showToast({message: msg,duration: 1500,bottom:450});} catch (error) {console.error(sh…...

网络安全渗透测试的相关理论和工具

网络安全 一、引言二、网络安全渗透测试的概念1、黑盒测试2、白盒测试3、灰盒测试 三、网络安全渗透测试的执行标准1、前期与客户的交流阶段1.1 渗透测试的目标网络1.2 进行渗透测试所使用的方法1.3 进行渗透测试所需要的条件1.4 渗透测试过程中的限制条件1.5 渗透测试的工期1.…...

C 语言 xml 库的使用

在C语言中,可以使用多种库来处理XML文件,其中最常用的是libxml2库。libxml2是一个用于解析XML和HTML文档的C语言库,它提供了许多功能,包括解析XML文档、创建XML文档、验证XML文档等等。下面是一个简单的示例,演示读取l…...

群晖(Synology)云备份的方案是什么

群晖云备份方案就是在本地的 NAS 如果出现问题,或者必须需要重做整列的时候,保证数据不丢失。 当然,这些是针对有价值的数据,如果只是电影或者不是自己的拍摄素材文件,其实可以不使用云备份方案,因为毕竟云…...

Flask 中的跨域难题:定义、影响与解决方案深度解析

跨域(Cross-Origin)是指在浏览器中,一个页面的脚本试图访问另一个页面的内容时发生的安全限制。Flask 作为一种 Web 应用框架,也涉及到跨域问题。本文将详细介绍跨域的定义、影响以及解决方案,涵盖如何在 Flask 中处理…...

汽车IVI中控开发入门及进阶(十二):V4L2视频

前言 汽车中控也被称为车机、车载多媒体、车载娱乐等,其中音频视频是非常重要的部分,比如播放各种格式的音乐文件、播放蓝牙接口的音乐、播放U盘或TF卡中的音视频文件,看起来很简单。如果说音频来源于振动,那么图片图像就是光反射的一种表象。模拟信号表示在空间上是连续…...

gitlab下载安装

1.下载 官网rpm包 gitlab/gitlab-ce - Results in gitlab/gitlab-ce 国内镜像 Index of /gitlab-ce/yum/ | 清华大学开源软件镜像站 | Tsinghua Open Source Mirror 2.安装 rpm -ivh gitlab-ce-16.4.3-ce.0.el7.x86_64.rpm 3.配置 vim /etc/gitlab/gitlab.rb 将 externa…...

Jmeter,提取响应体中的数据:正则表达式、Json提取器

一、正则表达式 1、线程组--创建线程组; 2、线程组--添加--取样器--HTTP请求; 3、Http请求--添加--后置处理器--正则表达式提取器; 4、线程组--添加--监听器--查看结果树; 5、线程组--添加--取样器--调试取样器。 响应体数据…...

【SpringBoot篇】基于布隆过滤器,缓存空值,解决缓存穿透问题 (商铺查询时可用)

文章目录 🍔什么是缓存穿透🎄解决办法⭐缓存空值处理🎈优点🎈缺点🎍代码实现 ⭐布隆过滤器🎍代码实现 🍔什么是缓存穿透 缓存穿透是指在使用缓存机制时,大量的请求无法从缓存中获取…...

Gitlab基础篇: Gitlab docker 安装部署、Gitlab 设置账号密码

文章目录 1、环境准备2、配置1)、初始化2)、修改gitlab配置文件3)、修改docker配置的gitlab默认端口 gitlab进阶配置gitlab 设置账号密码 1、环境准备 安装docker gitlab前确保docker环境,如果没有搭建docker请查阅“Linux docker 安装文档” docker 下载 gitlab容…...

c++常见函数处理

1、clamp clamp&#xff1a;区间限定函数 int64_t a Clamp(a, MIN_VALUE, MAX_VALUE); #include <iomanip> #include <iostream> #include <sstream>int main() {std::cout << "no setw: [" << 42 << "]\n"<&l…...

MYsql第二次作业

目录 问题 解答 1.显示所有职工的基本信息。 2.查询所有职工所属部门的部门号&#xff0c;不显示重复的部门号。 3.求出所有职工的人数。 4.列出最高工和最低工资。 5.列出职工的平均工资和总工资。 6.创建一个只有职工号、姓名和参加工作的新表&#xff0c;名为工作日…...

SQLAlchemy 第三篇

使用insert语句 from sqlalchemy import Table, Column, Integer, String, MetaDatametadata_obj MetaData() user_table Table("user_account",metadata_obj,Column("id", Integer, primary_keyTrue),Column("name", String(255)),Column(&q…...

交互过程中影响信息质量好坏的因素

人机交互是指人与计算机之间的交流和互动&#xff0c;而人人交流是指人与人之间的交流和互动。在信息质量方面&#xff0c;人机交互通常更为准确和精确&#xff0c;而人人交流可能存在误解、模糊和歧义。 人机交互的信息传递往往通过明确的界面、符号和指令等方式进行。计算机可…...

服务器上配置jupyter,提示Invalid credentials如何解决

我是按照网上教程在服务器上安装的jupyter以及进行的密码配置&#xff0c;我利用 passwd()这个口令生成的转译密码是"argon...."。按照教程配置jupyter notebook配置文件里面的内容&#xff0c;登陆网页提示"Invalid credentials"。我谷歌得到的解答是&…...

Axure中动态面板使用及轮播图多种登录方式左侧导航栏之案列

&#x1f3ac; 艳艳耶✌️&#xff1a;个人主页 &#x1f525; 个人专栏 &#xff1a;《产品经理如何画泳道图&流程图》 ⛺️ 越努力 &#xff0c;越幸运 目录 一、轮播图简介 1、什么是轮播图 2、轮播图有什么作用 3、轮播图有什么特点 4、轮播图适应范围 5、…...

大数据之旅-问题反思

1.谈谈你对MR执行流程各个阶段的理解&#xff08;提示里面涉及到排序&#xff0c;快速排序或者归并排序知道两种实现形式&#xff09;&#xff1f; 2.hadoop 1.0和hadoop 2.0明显的差异如何理解&#xff1f; hadoop2.0与hadoop1.0区别体现在在架构、性能、功能和组件方面&…...

系统级基础信号知识【Linux】

目录 一&#xff0c;什么是信号 进程面对信号常见的三种反应概述 二&#xff0c;产生信号 1.终端按键产生信号 signal 2. 进程异常产生信号 核心转储 3. 系统调用函数发送信号 kill raise abort 小结&#xff1a; 4. 由软件条件产生 alarm 5. 硬件异常产生信号…...

Excel单元格隐藏如何取消?

Excel工作表中的有些单元格隐藏了数据&#xff0c;如何取消隐藏行列呢&#xff1f;今天分享几个方法给大家 方法一&#xff1a; 选中隐藏的区域&#xff0c;点击右键&#xff0c;选择【取消隐藏】就可以了 方法二&#xff1a; 如果工作表中有多个地方有隐藏的话&#xff0c;…...

Visual Studio(VS)常用快捷键(最详细)

Visual Studio常用快捷键 一、生成&#xff1a;常用快捷键二、调式&#xff1a;常用快捷键三、编辑&#xff1a;常用快捷键四、文件&#xff1a;常用快捷键五、项目&#xff1a;常用快捷键六、重构&#xff1a;常用快捷键七、工具&#xff1a;常用快捷键八、视图&#xff1a;常…...

UDP特性之组播(多播)

UDP特性之组播 1. 组播的特点2. 设置主播属性2.1 发送端2.2 接收端 3. 组播通信流程3.1 发送端3.2 接收端 4. 通信代码 原文链接 在公司测试广播和多播有一点问题。。。 1. 组播的特点 组播也可以称之为多播这也是UDP的特性之一。组播是主机间一对多的通讯模式&#xff0c;是…...

ElasticSearch之cat shards API

命令样例如下&#xff1a; curl -X GET "https://localhost:9200/_cat/shards?vtrue&pretty" --cacert $ES_HOME/config/certs/http_ca.crt -u "elastic:ohCxPHQBEs5*lo7F9"执行结果输出如下&#xff1a; index shard prirep state docs s…...

Thread-Per-Message设计模式

Thread-Per-Message是为每一个消息的处理开辟一个线程&#xff0c;以并发方式处理&#xff0c;提高系统整体的吞吐量。这种模式再日常开发中非常常见&#xff0c;为了避免线程的频繁创建和销毁&#xff0c;可以使用线程池来代替。 示例代码如下&#xff1a; public class Requ…...

运筹学经典问题(一):指派问题

问题描述 有 N N N个任务&#xff0c;需要 N N N个人去完成&#xff0c;每个人完成不同工作的效率不同&#xff08;或者资源、收益等等&#xff09;&#xff0c;需要怎么分配使得整体的效率最高&#xff08;成本最低等等&#xff09;呢&#xff1f;这就是经典的指派问题啦&…...

产品经理之如何编写竞品分析(医疗HIS系统管理详细案例模板)

目录 一.项目周期 二.竞品分析的目的 三.竞品分析包含的维度 四.如何选择竞品 五.竞品画布 六.案例模板 一.项目周期 在整个项目的周期&#xff0c;产品经理所做的事情主要在项目前期做市场分析、需求调研等&#xff0c;下面一张图概况了整个项目周期产品经理、开发工程师…...

虚拟内存管理

虚拟内存管理 页面置换算法 功能和目标&#xff1a; 功能&#xff1a;当缺页中断发生&#xff0c;需要调入新的页面而内存已经满时&#xff0c;选择内存当中哪个物理页面被置换。目标&#xff1a;尽可能的减少页面的换进换出次数&#xff08;即缺页中断的次数&#xff09;。具…...

ssh时怎么同时指定其端口号,以及scp文件到远程的指定端口

如果想要通过 SSH 连接到指定端口的远程服务器&#xff0c;可以在 SSH 命令中使用 -p 或 --port 参数来指定端口号。以下是相应的用法&#xff1a; $ ssh -p <port> userhost其中&#xff0c; 是要连接的端口号&#xff0c;user 是远程服务器上的用户名&#xff0c;host…...

Redis过期淘汰策略

一. Redis过期淘汰策略 当Redis已用内存超过maxmemory限定时&#xff0c;触发主动清理策略。 主动清理策略在Redis 4.0之前一共实现了 6 种内存淘汰策略&#xff0c;在 4.0 之后&#xff0c;又增加了 2 种 策略&#xff0c;总共8种&#xff1a; 针对设置了过期时间的key做处理…...