除法求值[中等]
一、题目
给你一个变量对数组equations
和一个实数值数组values
作为已知条件,其中equations[i] = [Ai, Bi]
和values[i]
共同表示等式Ai / Bi = values[i]
。每个Ai
或Bi
是一个表示单个变量的字符串。另有一些以数组queries
表示的问题,其中queries[j] = [Cj, Dj]
表示第j
个问题,请你根据已知条件找出Cj / Dj = ?
的结果作为答案。返回 所有问题的答案 。如果存在某个无法确定的答案,则用-1.0
替代这个答案。如果问题中出现了给定的已知条件中没有出现的字符串,也需要用-1.0
替代这个答案。
注意:输入总是有效的。你可以假设除法运算中不会出现除数为0
的情况,且不存在任何矛盾的结果。
注意:未在等式列表中出现的变量是未定义的,因此无法确定它们的答案。
示例 1:
输入:equations = [["a","b"],["b","c"]], values = [2.0,3.0], queries = [["a","c"],["b","a"],["a","e"],["a","a"],["x","x"]]
输出:[6.00000,0.50000,-1.00000,1.00000,-1.00000]
解释:
条件:a / b = 2.0, b / c = 3.0
问题:a / c = ?, b / a = ?, a / e = ?, a / a = ?, x / x = ?
结果:[6.0, 0.5, -1.0, 1.0, -1.0 ]
注意:x
是未定义的=> -1.0
示例 2:
输入:equations = [["a","b"],["b","c"],["bc","cd"]], values = [1.5,2.5,5.0], queries = [["a","c"],["c","b"],["bc","cd"],["cd","bc"]]
输出:[3.75000,0.40000,5.00000,0.20000]
示例 3:
输入:equations = [["a","b"]], values = [0.5], queries = [["a","b"],["b","a"],["a","c"],["x","y"]]
输出:[0.50000,2.00000,-1.00000,-1.00000]
1 <= equations.length <= 20
equations[i].length == 2
1 <= Ai.length, Bi.length <= 5
values.length == equations.length
0.0 < values[i] <= 20.0
1 <= queries.length <= 20
queries[i].length == 2
1 <= Cj.length, Dj.length <= 5
Ai
,Bi
,Cj
,Dj
由小写英文字母与数字组成
二、代码
广度优先搜索: 我们可以将整个问题建模成一张图:给定图中的一些点(变量),以及某些边的权值(两个变量的比值),试对任意两点(两个变量)求出其路径长(两个变量的比值)。因此,我们首先需要遍历equations
数组,找出其中所有不同的字符串,并通过哈希表将每个不同的字符串映射成整数。
在构建完图之后,对于任何一个查询,就可以从起点出发,通过广度优先搜索的方式,不断更新起点与当前点之间的路径长度,直到搜索到终点为止。
class Solution {public double[] calcEquation(List<List<String>> equations, double[] values, List<List<String>> queries) {int nvars = 0;Map<String, Integer> variables = new HashMap<String, Integer>();int n = equations.size();for (int i = 0; i < n; i++) {if (!variables.containsKey(equations.get(i).get(0))) {variables.put(equations.get(i).get(0), nvars++);}if (!variables.containsKey(equations.get(i).get(1))) {variables.put(equations.get(i).get(1), nvars++);}}// 对于每个点,存储其直接连接到的所有点及对应的权值List<Pair>[] edges = new List[nvars];for (int i = 0; i < nvars; i++) {edges[i] = new ArrayList<Pair>();}for (int i = 0; i < n; i++) {int va = variables.get(equations.get(i).get(0)), vb = variables.get(equations.get(i).get(1));edges[va].add(new Pair(vb, values[i]));edges[vb].add(new Pair(va, 1.0 / values[i]));}int queriesCount = queries.size();double[] ret = new double[queriesCount];for (int i = 0; i < queriesCount; i++) {List<String> query = queries.get(i);double result = -1.0;if (variables.containsKey(query.get(0)) && variables.containsKey(query.get(1))) {int ia = variables.get(query.get(0)), ib = variables.get(query.get(1));if (ia == ib) {result = 1.0;} else {Queue<Integer> points = new LinkedList<Integer>();points.offer(ia);double[] ratios = new double[nvars];Arrays.fill(ratios, -1.0);ratios[ia] = 1.0;while (!points.isEmpty() && ratios[ib] < 0) {int x = points.poll();for (Pair pair : edges[x]) {int y = pair.index;double val = pair.value;if (ratios[y] < 0) {ratios[y] = ratios[x] * val;points.offer(y);}}}result = ratios[ib];}}ret[i] = result;}return ret;}
}class Pair {int index;double value;Pair(int index, double value) {this.index = index;this.value = value;}
}
时间复杂度: O(ML+Q⋅(L+M))
,其中M
为边的数量,Q
为询问的数量,L
为字符串的平均长度。构建图时,需要处理M
条边,每条边都涉及到O(L)
的字符串比较;处理查询时,每次查询首先要进行一次O(L)
的比较,然后至多遍历O(M)
条边。
空间复杂度: O(NL+M)
,其中N
为点的数量,M
为边的数量,L
为字符串的平均长度。为了将每个字符串映射到整数,需要开辟空间为O(NL)
的哈希表;随后,需要花费O(M)
的空间存储每条边的权重;处理查询时,还需要O(N)
的空间维护访问队列。最终,总的复杂度为O(NL+M+N)=O(NL+M)
。
【2】Floyd 算法: 对于查询数量很多的情形,如果为每次查询都独立搜索一次,则效率会变低。为此,我们不妨对图先做一定的预处理,随后就可以在较短的时间内回答每个查询。在本题中,我们可以使用Floyd
算法,预先计算出任意两点之间的距离。
class Solution {public double[] calcEquation(List<List<String>> equations, double[] values, List<List<String>> queries) {int nvars = 0;Map<String, Integer> variables = new HashMap<String, Integer>();int n = equations.size();for (int i = 0; i < n; i++) {if (!variables.containsKey(equations.get(i).get(0))) {variables.put(equations.get(i).get(0), nvars++);}if (!variables.containsKey(equations.get(i).get(1))) {variables.put(equations.get(i).get(1), nvars++);}}double[][] graph = new double[nvars][nvars];for (int i = 0; i < nvars; i++) {Arrays.fill(graph[i], -1.0);}for (int i = 0; i < n; i++) {int va = variables.get(equations.get(i).get(0)), vb = variables.get(equations.get(i).get(1));graph[va][vb] = values[i];graph[vb][va] = 1.0 / values[i];}for (int k = 0; k < nvars; k++) {for (int i = 0; i < nvars; i++) {for (int j = 0; j < nvars; j++) {if (graph[i][k] > 0 && graph[k][j] > 0) {graph[i][j] = graph[i][k] * graph[k][j];}}}}int queriesCount = queries.size();double[] ret = new double[queriesCount];for (int i = 0; i < queriesCount; i++) {List<String> query = queries.get(i);double result = -1.0;if (variables.containsKey(query.get(0)) && variables.containsKey(query.get(1))) {int ia = variables.get(query.get(0)), ib = variables.get(query.get(1));if (graph[ia][ib] > 0) {result = graph[ia][ib];}}ret[i] = result;}return ret;}
}
时间复杂度: O(ML+N3+QL)
。构建图需要O(ML)
的时间;Floyd
算法需要O(N^3)
的时间;处理查询时,单次查询只需要O(L)
的字符串比较以及常数时间的额外操作。
空间复杂度: O(NL+N^2)
。
相关文章:
除法求值[中等]
一、题目 给你一个变量对数组equations和一个实数值数组values作为已知条件,其中equations[i] [Ai, Bi]和values[i]共同表示等式Ai / Bi values[i]。每个Ai或Bi是一个表示单个变量的字符串。另有一些以数组queries表示的问题,其中queries[j] [Cj, Dj…...
新时代商业市场:AR技术的挑战与机遇并存
随着科技的不断发展,增强现实(AR)技术逐渐成为当今社会的一个重要组成部分。AR技术能够将虚拟世界与现实世界相结合,为人们提供更加丰富、多样化的体验。在新时代的社会商业市场中,AR技术也正逐渐被应用于各种商业活动…...
RHEL8中ansible的使用
编写ansible.cfg和清单文件ansible的基本用法 本章实验三台RHEL8系统(rhel801,rhel802,rhel803),其中rhel801是ansible主机 这里要确保ansible主机能够解析所有被管理的机器,这里通过配置/etc/hosts来实现…...
【1.6计算机组成与体系结构】存储系统
目录 1.层次化存储结构2.Cache2.1 Cache的介绍2.2 局部性原理2.3 Cache应用 1.层次化存储结构 由 ⬆ CPU:寄存器。 快 ⬆ Cache:按内容存取(相联存储器)。 到 ⬆内存(主存):DRAM。 慢 ⬆ 外存(辅存&#…...
TCP/UDP 协议
目录 一.TCP协议 1.介绍 2.报文格式 编辑 确认号 控制位 窗口大小 3.TCP特性 二.TCP协议的三次握手 1.tcp 三次握手的过程 三.四次挥手 2.有限状态机 四.tcp协议和udp协议的区别 五.udp协议 UDP特性 六.telnet协议 一.TCP协议 1.介绍 TCP(Transm…...
如何正确理解和使用 Golang 中 nil ?
目录 指针中的 nil 切片中的 nil map 中的 nil 通道中的 nil 函数中的 nil 接口中的 nil 避免 nil 相关问题的最佳实践 小结 在 Golang 中,nil 是一个预定义的标识符,在不同的上下文环境中有不同的含义,但通常表示“无”、“空”或“…...
IDEA新建jdk8 spring boot项目
今天新建spring boot项目发现JDK版本最低可选17。 但是目前用的最多的还是JDK8啊。 解决办法 Server URL中设置: https://start.aliyun.com/设置完成后,又可以愉快的用jdk8创建项目了。 参考 https://blog.csdn.net/imbzz/article/details/13469117…...
Qt/C++音视频开发59-使用mdk-sdk组件/原qtav作者力作/性能凶残/超级跨平台
一、前言 最近一个月一直在研究mdk-sdk音视频组件,这个组件是原qtav作者的最新力作,提供了各种各样的示例demo,不仅限于支持C,其他各种比如java/flutter/web/android等全部支持,性能上也是杠杠的,目前大概…...
智安网络|企业网络安全工具对比:云桌面与堡垒机,哪个更适合您的需求
随着云计算技术的快速发展,越来越多的企业开始采用云计算解决方案来提高效率和灵活性。在云计算环境下,云桌面和堡垒机被广泛应用于企业网络安全和办公环境中。尽管它们都有助于提升企业的安全和效率,但云桌面和堡垒机在功能和应用方面存在着…...
Git忽略已经提交的文件
原理类似于 Android修改submodule的lib包名...
MVVM和MVC以及MVP的原理以及它们的区别
MVVM、MVC 和 MVP 都是前端架构模式,它们各自有不同的原理和特点。 MVC(Model-View-Controller) 原理:MVC 将应用程序分为三个部分:模型(Model)、视图(View)和控制器&a…...
WeChatMsg: 导出微信聊天记录 | 开源日报 No.108
Mozilla-Ocho/llamafile Stars: 3.5k License: NOASSERTION llamafile 是一个开源项目,旨在通过将 lama.cpp 与 Cosmopolitan Libc 结合成一个框架,将 LLM (Large Language Models) 的复杂性折叠到单个文件可执行程序中,并使其能够在大多数…...
Python学习之复习MySQL-Day3(DQL)
目录 文章声明⭐⭐⭐让我们开始今天的学习吧!DQL简介基本查询查询多个/全部字段设置别名去除重复记录 条件查询条件查询介绍实例演示 聚合函数什么是聚合函数?常见的聚合函数实例演示 分组查询分组查询语法where 和 having 的区别实例演示 排序查询语法实…...
AI超级个体:ChatGPT与AIGC实战指南
目录 前言 一、ChatGPT在日常工作中的应用场景 1. 客户服务与支持 2. 内部沟通与协作 3. 创新与问题解决 二、巧用ChatGPT提升工作效率 1. 自动化工作流程 2. 信息整合与共享 3. 提高决策效率 三、巧用ChatGPT创造价值 1. 优化产品和服务 2. 提高员工满意度和留任率…...
SpringBoot集成websocket(5)|(使用OkHttpClient实现websocket以及详细介绍)
SpringBoot集成websocket(5)|(使用OkHttpClient实现websocket以及详细介绍) 文章目录 SpringBoot集成websocket(5)|(使用OkHttpClient实现websocket以及详细介绍)[TOC] 前言一、初始…...
Kafka-Kafka基本原理与集群快速搭建(实践)
Kafka单机搭建 下载Kafka Apache Download Mirrors 解压 tar -zxvf kafka_2.12-3.4.0.tgz -C /usr/local/src/software/kafkakafka内部bin目录下有个内置的zookeeper(用于单机) 启动zookeeper(在后台启动) nohup bin/zookeeper-server-start.sh conf…...
Elasticsearch 进阶(索引、类型、字段、分片、副本、集群等详细说明)-06
笔记来源:Elasticsearch Elasticsearch进阶 进阶-核心概念 索引Index 一个索引就是一个拥有几分相似特征的文档的集合。比如说,你可以有一个客户数据的索引,另一个产品目录的索引,还有一个订单数据的索引。一个索引由一个名字…...
hive的分区表和分桶表详解
分区表 Hive中的分区就是把一张大表的数据按照业务需要分散的存储到多个目录,每个目录就称为该表的一个分区。在查询时通过where子句中的表达式选择查询所需要的分区,这样的查询效率会提高很多。 静态分区表基本语法 创建分区表 create table dept_p…...
verilog语法进阶-分布式ram
概述: FPGA的LUT查找表是用RAM设计的,所以LUT可以当成ram来使用,也并不是所有的LUT都可以当成ram来使用,sliceM的ram可以当成分布式ram来使用,而sliceL的ram只能当成rom来使用,也就是只能读,不能写&#x…...
HarmonyOS使用HTTP访问网络
HTTP数据请求 1 概述 日常生活中我们使用应用程序看新闻、发送消息等,都需要连接到互联网,从服务端获取数据。例如,新闻应用可以从新闻服务器中获取最新的热点新闻,从而给用户打造更加丰富、更加实用的体验。 那么要实现这样一种…...
GZ015 机器人系统集成应用技术样题1-学生赛
2023年全国职业院校技能大赛 高职组“机器人系统集成应用技术”赛项 竞赛任务书(学生赛) 样题1 选手须知: 本任务书共 25页,如出现任务书缺页、字迹不清等问题,请及时向裁判示意,并进行任务书的更换。参赛队…...
计算机毕业设计 基于SpringBoot的日常办公用品直售推荐系统的设计与实现 Java实战项目 附源码+文档+视频讲解
博主介绍:✌从事软件开发10年之余,专注于Java技术领域、Python人工智能及数据挖掘、小程序项目开发和Android项目开发等。CSDN、掘金、华为云、InfoQ、阿里云等平台优质作者✌ 🍅文末获取源码联系🍅 👇🏻 精…...
uniapp:使用fixed定位,iOS平台的安全区域问题解决
manifest.json > 添加节点 "safearea": { //iOS平台的安全区域"background": "#1C1E22","backgroundDark": "#1C1E22", // HX 3.1.19支持"bottom": {"offset": "auto"} },已解决ÿ…...
三层交换机原理与配置
文章目录 三层交换机原理与配置一、三层交换技术概述二、传统的 MLS三、基于CEF 的MLS1、转发信息库(FIB)2、邻接关系表3、工作原理: 四、三层交换机的配置1、三层交换机配置命令2、三层交换机配置步骤 三层交换机原理与配置 一、三层交换技…...
Linux-----5、文件系统
# 文件系统 # 终端的基本操作 ㈠ 打开多个终端 ㈡ 快速清屏 新建标签:command T 新建窗口:command N 关闭标签:command Q 关闭窗口:command W 放大:command 缩小:command - 清屏ÿ…...
电脑自动关机怎么设置?
电脑自动关机怎么设置?如果你是一名上班族,工作忙起来很多事情都会忘记做,有时候忙到很晚后紧急下班,就会忘记给电脑关机,电脑如果经常不关机,那么电脑就会超负荷的运转,大家都知道电脑的寿命是…...
MS5602视频 8 位数模转换器,可替代TLC5602
MS5602 是低功率、超高速视频数模转换器。 MS5602 以 DC 至 20MHz 的采样速率,将数字信号转换成模拟信号。由于高速工作 的特性, MS5602 适合于数字电视、电脑视频处理及雷达信号处 理等数字视频应用。 MS5602 工作在 -40C 至 85C 的温度范围内 …...
Logistic Regression——逻辑回归
1. 为什么需要逻辑回归 在前面学习的线性回归中,我们的预测值都是任意的连续值,例如预测房价。除此之外,还有一个常见的问题就是分类问题,而逻辑回归是一个解决分类问题的模型,其预测值是离散的。 分类问题又包括…...
跟随鼠标动态显示线上点的值(基于Qt的开源绘图控件QCustomPlot进行二次开发)
本文为转载 原文链接: 采用Qt快速绘制多条曲线(折线),跟随鼠标动态显示线上点的值(基于Qt的开源绘图控件QCustomPlot进行二次开发) 内容如下 QCustomPlot是一个开源的基于Qt的第三方绘图库,能…...
Todesk、向日葵等访问“无显示器”主机黑屏问题解决
我的环境是 ubuntu 22.04 安装 要安装 video dummy,请在终端中运行以下命令: sudo apt install xserver-xorg-video-dummy配置 video dummy 的配置文件请自行搜索 使用任何文本编辑器打开此文件。 我的是 /etc/X11/xorg.conf 默认配置文件包含以下内…...
禁止搜索引擎抓取wordpress的目录/怎么下载app到手机上
Graphviz是一个可以对图进行自动布局的绘图工具,由贝尔实验室开源。我们在上次 Python 快速绘制画出漂亮的系统架构图 提到的diagrams,其内部的编排逻辑就用到了这个开源工具包。而今天我们要介绍的项目,就是基于Python和Graphviz开发的&…...
科技创新网站建设策划书/买卖链接网站
OWC介绍: Microsoft Office 2000中包含有一组称为OWC的新控件集合。利用这些组件,可以在WEB浏览器以及其他传统的编程环境下创建许多有用的数据分析解决方案与报表生成解决方案。 Office Web Component是一组COM(Component Object Model:组件对象模型)控…...
中铁建设集团门户网登录官网查询/自己搜20条优化措施
Flume自定义Source、Sink、数据流监控 请参考: 3.6 自定义Source 3.7 自定义Sink 3.8 Flume数据流监控 地址: 阿里云盘:https://www.aliyundrive.com/s/qZqsEN47GZQ 百度网盘:https://pan.baidu…...
做网站经费/线上引流的八种推广方式
苹果开发的M1处理器在性能方面已超越了Intel的i7,这代表着ARM阵营在PC处理器市场的重大突破,然而M1处理器能有如此成就却要感谢早已在1990年代末消失的DEC公司。DEC公司是上世纪最伟大的计算机公司之一,它是一家历史最悠久、规模庞大的计算机…...
做网站大公司还是小公司/网站怎么优化
2018年洛阳十大技校排名 排名前十的学校有哪些2018-06-23 19:25:32文/王蕊中考结束后一定有很多初中生想就读技校,下面,初三网小编就为大家整理一下2018年洛阳最好的十大技校排名,以便大家选择合适的技校。2018洛阳十大技校排名技校排名技校名…...
做蛋糕需要建议网站不/广州推广系统
SEC已经向当地法院提交文件,要求马斯克以藐视法院在2018年10月16日的判决被拘留。 今日最新消息,据外媒报道,美国证券交易委员会(以下简称“SEC”)要求法官拘留特斯拉CEO埃隆马斯克,原因是马斯克藐视法院的…...