智能优化算法应用:基于天牛须算法3D无线传感器网络(WSN)覆盖优化 - 附代码
智能优化算法应用:基于天牛须算法3D无线传感器网络(WSN)覆盖优化 - 附代码
文章目录
- 智能优化算法应用:基于天牛须算法3D无线传感器网络(WSN)覆盖优化 - 附代码
- 1.无线传感网络节点模型
- 2.覆盖数学模型及分析
- 3.天牛须算法
- 4.实验参数设定
- 5.算法结果
- 6.参考文献
- 7.MATLAB代码
摘要:本文主要介绍如何用天牛须算法进行3D无线传感器网(WSN)覆盖优化。
1.无线传感网络节点模型
本文主要基于0/1模型,进行寻优。在二维平面上传感器节点的感知范围是一个以节点为圆心,半径为 R n R_n Rn的圆形区域,该圆形区域通常被称为该节点的“感知圆盘”, R n R_n Rn称为传感器节点的感知半径,感知半径与节点内置传感器件的物理特性有关,假设节点 n n n的位置坐标为 ( x n , y n , z n ) (x_n,y_n,z_n) (xn,yn,zn)在0-1感知模型中,对于平面上任意一点 p ( x p , y p , z p ) p(x_p,y_p,z_p) p(xp,yp,zp),则节点 n n n监测到区域内点 p p p的事件发生概率为:
P r ( n , p ) = { 1 , d ( n , p ) ≤ R n 0 , e s l e (1) P_r(n,p)=\begin{cases}1, \,d(n,p)\leq R_n\\ 0,\, esle \end{cases}\tag{1} Pr(n,p)={1,d(n,p)≤Rn0,esle(1)
其中 d ( n , p ) = ( x n − x p ) 2 + ( y n − y p ) 2 + ( z n − z p ) 2 d(n,p)=\sqrt{(x_n-x_p)^2+(y_n-y_p)^2 + (z_n-z_p)^2} d(n,p)=(xn−xp)2+(yn−yp)2+(zn−zp)2为点和之间的欧式距离。
2.覆盖数学模型及分析
现假定目标监测区域为二维平面,在区域 A r e a Area Area上投放同型结构传感器节点的数目为N,每个节点的位置坐标值假设已被初始化赋值,且节点的感知半径r。传感器节点集则表示为:
N o d e { x 1 , . . . , x N } (2) Node\{x_1,...,x_N\} \tag{2} Node{x1,...,xN}(2)
其中 n o d e i = { x i , y i , z i , r } node_i=\{x_i,y_i,z_i,r\} nodei={xi,yi,zi,r},表示以节点 ( x i , y i , z i ) (x_i,y_i,z_i) (xi,yi,zi)为圆心,r为监测半径的球,假定监测区域 A r e a Area Area被数字化离散为 m ∗ n ∗ l m*n*l m∗n∗l个空间点,空间点的坐标为 ( x , y , z ) (x,y,z) (x,y,z),目标点与传感器节点间的距离为:
d ( n o d e i , p ) = ( x i − x ) 2 + ( y i − y ) 2 + ( z i − z ) 2 (3) d(node_i,p)=\sqrt{(x_i-x)^2+(y_i-y)^2 + (z_i-z)^2}\tag{3} d(nodei,p)=(xi−x)2+(yi−y)2+(zi−z)2(3)
目标区域内点被传感器节点所覆盖的事件定义为 c i c_i ci。则该事件发生的概率 P c i P{c_i} Pci即为点 ( x , y , z ) (x,y,z) (x,y,z)被传感器节点 n o d e i node_i nodei所覆盖的概率:
P c o v ( x , y , z , n o d e i ) = { 1 , i f d ( n o d e i , p ) ≤ r 0 , e s l e (4) P_{cov}(x,y,z,node_i)=\begin{cases}1, if\,d(node_i,p)\leq r\\ 0,\, esle \end{cases}\tag{4} Pcov(x,y,z,nodei)={1,ifd(nodei,p)≤r0,esle(4)
我们将所有的传感器节点在目标监测环境中的区域覆盖率 C o v e r R a t i o CoverRatio CoverRatio定义为传感器节点集的覆盖面积与监测区域的面积之比,如公式所示:
C o v e r R a t i o = ∑ P c o v m ∗ n ∗ l (5) CoverRatio = \frac{\sum P_{cov}}{m*n*l}\tag{5} CoverRatio=m∗n∗l∑Pcov(5)
那我们的最终目标就是找到一组节点使得覆盖率最大。
3.天牛须算法
天牛须算法原理请参考:网络博客
天牛须算法是寻找最小值。于是适应度函数定义为未覆盖率最小,即覆盖率最大。如下:
f u n = a r g m i n ( 1 − C o v e r R a t i o ) = a r g m i n ( 1 − ∑ P c o v m ∗ n ∗ l ) (6) fun = argmin(1 - CoverRatio) = argmin(1-\frac{\sum P_{cov}}{m*n*l}) \tag{6} fun=argmin(1−CoverRatio)=argmin(1−m∗n∗l∑Pcov)(6)
4.实验参数设定
无线传感器覆盖参数设定如下:
%% 设定WNS覆盖参数,
%% 默认输入参数都是整数,如果想定义小数,请自行乘以系数变为整数再做转换。
%% 比如范围1*1,R=0.03可以转换为100*100,R=3;
%区域范围为AreaX*AreaY*AreaZ
AreaX = 100;
AreaY = 100;
AreaZ = 100;
N = 20 ;%覆盖节点数
R = 15;%通信半径
天牛须算法参数如下:
%% 设定天牛须优化参数
pop=30; % 种群数量
Max_iteration=30; %设定最大迭代次数
lb = ones(1,3*N);
ub = [AreaX.*ones(1,N),AreaY.*ones(1,N),AreaZ.*ones(1,N)];
dim = 3*N;%维度为3N,N个坐标点
5.算法结果
从结果来看,覆盖率在优化过程中不断上升。表明天牛须算法对覆盖优化起到了优化的作用。
6.参考文献
[1] 史朝亚. 基于PSO算法无线传感器网络覆盖优化的研究[D]. 南京理工大学.
7.MATLAB代码
相关文章:
智能优化算法应用:基于天牛须算法3D无线传感器网络(WSN)覆盖优化 - 附代码
智能优化算法应用:基于天牛须算法3D无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用:基于天牛须算法3D无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.天牛须算法4.实验参数设定5.算法结果6.参考文…...
【Hive】【Hadoop】工作中常操作的笔记-随时添加
文章目录 1、Hive 复制一个表:2、字段级操作3、hdfs 文件统计 1、Hive 复制一个表: 直接Copy文件 create table new_table like table_name;hdfs dfs -get /apps/hive/warehouse/ods.db/table_nameload data local inpath /路径 into table new_table;修复表: m…...
DIY电脑装机机箱风扇安装方法
作为第一次自己diy一台电脑主机的我,在经历了众多的坑中今天来说一下如何安装机箱风扇的问题 一、风扇的数量 1、i3 xx50显卡 就用一个cpu散热风扇即可 2、i5 xx60 一个cpu散热风扇 一个风扇即可 3、i7 xx70 一个cpu散热 4个风扇即可 4、i9 xx80 就需要7个以…...
基础算法(4):排序(4)冒泡排序
1.冒泡排序(BubbleSort)实现 算法步骤:比较相邻的元素。如果第一个比第二个大,就交换。 对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对。 这步做完后,最后的元素会是最大的数。 针对所有的元素重复以上的步骤&#…...
鸿蒙开发之网络请求
//需要导入http头文件 import http from ohos.net.http//请求地址url: string http://apis.juhe.cn/simpleWeather/queryText(this.message).maxFontSize(50).minFontSize(10).fontWeight(FontWeight.Bold).onClick(() > {console.log(请求开始)let req http.createHttp()…...
PrimDiffusion:3D 人类生成的体积基元扩散模型NeurIPS 2023
NeurIPS2023 ,这是一种用于 3D 人体生成的体积基元扩散模型,可通过离体拓扑实现明确的姿势、视图和形状控制。 PrimDiffusion 对一组紧凑地代表 3D 人体的基元执行扩散和去噪过程。这种生成建模可以实现明确的姿势、视图和形状控制,并能够在…...
时序预测 | Python实现LSTM-Attention-XGBoost组合模型电力需求预测
时序预测 | Python实现LSTM-Attention-XGBoost组合模型电力需求预测 目录 时序预测 | Python实现LSTM-Attention-XGBoost组合模型电力需求预测预测效果基本描述程序设计参考资料预测效果 基本描述 该数据集因其每小时的用电量数据以及 TSO 对消耗和定价的相应预测而值得注意,从…...
【网络安全技术】电子邮件安全PGP,SMIME
一、PGP(Pretty Good Privacy) PGP是一种邮件加密手段,他在发邮件一方加密,然后发给发送方邮件服务器,发送方邮件服务器再发送给接收方邮件服务器,然后接收方再从接收方邮件服务器pop出来,这整…...
CSS学习笔记整理
CSS 即 层叠样式表/CSS样式表/级联样式表,也是标记语言, 用于设置HTML页面中的文本内容(字体、大小、对齐方式等)、图片的外形(宽高、边框样式、边距)以及版面的布局和外观显示样式 目录 准备工作 Chrome调…...
SpringData自定义操作
一、JPQL和SQL 查询 package com.kuang.repositories;import com.kuang.pojo.Customer; import org.springframework.data.jpa.repository.Query; import org.springframework.data.repository.CrudRepository; import org.springframework.data.repository.PagingAndSortingR…...
【Java JVM】运行时数据区
JVM 在执行 Java 程序的过程中会把它管理的内存分为若干个不同的数据区域, 这些区域有着各自的用途。 根据《Java虚拟机规范》中规定, JVM 所管理的内存大致包括以下几个运行时数据区域, 如图所示: 这个运行时数据区被分为了 5 大块 方法区 (Method Area)堆 (Heap)虚拟机栈 (V…...
k8s中pod监控数据在grafana中展示
实现目标:将kubesphere[K8S]中运行的pod监控数据在grafana平台进行展示。 前提说明:需要在k8s每个集群中内置的prometheus配置中将pod指标数据远程写入到victoriametrics持久化数据库中。 实现效果如下: CPU使用量: round(sum by (namespace, pod) (irate(container_cpu…...
人机协同之间也有混馈机制
不懂数学的狮子,能精准的在最佳时刻、最佳路径捕捉到羚羊,这种天赋的“算计”能力,可谓叹为观止!里面既有反馈也有前馈,应该是混馈机制。混馈机制是指信息在系统中同时进行正向和反向的传递与调节。在狮子捕捉羚羊的过…...
微服务网关Gateway
springcloud官方提供的网关组件spring-cloud-starter-gateway,看pom.xml文件,引入了webflux做响应式编程,请求转发用到了netty的reactor模型,支持的请求数在1W~1.5W左右。hystrix停止维护后,官方推荐resilience4j做服务熔断,网关这里也能看到依赖。 对于网关提供的功能…...
flume:Ncat: Connection refused.
一:nc -lk 44444 和 nc localhost 44444区别 nc -lk 44444 和 nc localhost 44444 是使用 nc 命令进行网络通信时的两种不同方式。 1. nc -lk 44444: - 这个命令表示在本地监听指定端口(44444)并接受传入的连接。 - -l 选项…...
selenium 与 chromedriver安装
本文章向大家介绍selenium 安装与 chromedriver安装,主要包括selenium 安装与 chromedriver安装使用实例、应用技巧、基本知识点总结和需要注意事项供大家参考。 一、安装selenium 1、Selenium简介 Selenium是一个Web的自动化测试工具,最初是为网站自动化测试而开…...
【Unity】2D项目中如何让Camera展示的大小正好等于某一个Game Object的大小
【背景】 用Unity做工具软件的话希望Camera大小正好和界面Panel一致。 【方法一:手动调整】 相机设置成正交后手动调整边框,当然这种方法精确度不高。 【方法二:在Camera上追加如下脚本】 这里面的public变量里面拖放你想要对齐的目标对象即可。 using UnityEngine;pu…...
last block incomplete in decryption
测试AES加密参数时报出的错,对比参数,发现接口收到的请求参数少了个号。这是因为号在URL中是一个特殊字符,所以传递时可能会丢失。 处理方案 使用param.replaceAll(" ", "")统一替换空格为号。前端传递参数时,…...
Guardrails for Amazon Bedrock 基于具体使用案例与负责任 AI 政策实现定制式安全保障(预览版)
作为负责任的人工智能(AI)战略的一部分,您现在可以使用 Guardrails for Amazon Bedrock(预览版),实施专为您的用例和负责任的人工智能政策而定制的保障措施,以此促进用户与生成式人工智能应用程…...
flutter学习-day12-可滚动组件和监听
📚 目录 简介可滚动组件 SingleChildScrollViewListView separated分割线无限加载列表带标题列表 滚动监听和控制 ScrollController滚动监听NotificationListener滚动监听 AnimatedList动画列表滚动网格布局GridView 横轴子元素为固定数量横轴子元素为固定最大长度…...
LeetCode:967连续查相同的数字(DFS)
题目 返回所有长度为 n 且满足其每两个连续位上的数字之间的差的绝对值为 k 的 非负整数 。 请注意,除了 数字 0 本身之外,答案中的每个数字都 不能 有前导零。例如,01 有一个前导零,所以是无效的;但 0 是有效的。 …...
深入剖析NPM: Node包管理器的介绍和使用指南
导言:NPM(Node Package Manager)是JavaScript世界中最受欢迎的包管理器之一。它的出现大大简化了JavaScript开发过程中的依赖管理和模块化。本文将向您介绍NPM的基本概念、功能和常见用法,并为您提供一份详尽的NPM使用指南。 一、…...
AI视频-stable-video-diffusio介绍
介绍 stbilityai/stable-video-diffusion-img2vid-xt模型,由Stability AI开发和训练的基于散度的图像到视频生成模型。该模型可以接受一张静态图像作为条件,并生成出一个短视频。 该模型通过在SVD Image-to-Video [14帧]的基础上进行微调而来,可以生成576x1024分辨…...
day01-报表技术POI
前言 报表[forms for reporting to the higher organizations],就是向上级报告情况的表格。简单的说:报表就是用表格、图表等格式来动态显示数据,可以用公式表示为:“报表 多样的格式 动态的数据”。 1、开发环境搭建 功能说…...
如何预防最新的.locked、.locked1勒索病毒感染您的计算机?
尊敬的读者: 近期,网络安全领域迎来一股新潮——.locked、.locked1勒索病毒的威胁,其先进的加密技术令人生畏。本文将深入剖析.locked、.locked1勒索病毒的阴谋,提供特色数据恢复策略,并揭示锁定恶劣行径的先锋预防手…...
实现两张图片的接缝线拼接
使用ORB算法检测特征点,并通过BFMatcher进行特征点匹配。然后,根据Lowes ratio test选择好的匹配点,并使用findHomography计算单应性矩阵。最后,使用warpPerspective将图像进行透视变换,然后将第二张图像粘贴到变换后的…...
基于JNI 实现 嵌套 List 类型参数解析
基于JNI 实现 嵌套 List 类型参数解析 背景分析解决 背景 在前面两篇文章中,我们总结了Java 调用 C/C SDK 的几种方案,分享了JNI在实践过程中的一些踩坑点,而在这篇文章将继续分享针对Java List类型及其嵌套类型,我们的JNI如何接…...
探索灵活性与可维护性的利器:策略(Strategy)模式详解
目录 编辑 1. 策略模式概述: 2. 主要角色: 3. 实例场景: 4. 具体实现步骤: 步骤一:定义策略接口 5. 使用策略模式的客户端代码: 总结: 我的其他博客 1. 策略模式概述: 策…...
压缩包文件暴力破解 -Server2005(解析)
任务五十一: 压缩包文件暴力破解 任务环境说明:Server2005 1. 通过本地PC中渗透测试平台Kali使用Nmap扫描目标靶机服务版本信息,将 Telnet 版本信息字符串 作为 Flag 提交; flag:Microsoft Windows XP telnetd 2. 通过本地PC中渗透测试平台Kali对服务器场景Windows进行渗透测…...
mars3d加载arcgis发布的服务,⽀持4523坐标
问题 1.从这个服务地址加载,具体在哪⾥去转坐标呢? 加个 usePreCachedTilesIfAvailable:false 参数即可 坐标系为4490的arcgis影像服务图层,配置后瓦片加载不出来,没报错 甚至可以跳转 没有看出问题,或者测…...
网站建设第二年费用/网上哪里接app推广单
又到3dmax插件神器的小课堂时间了!小伙伴们还记得之前几张的知识点吗?如果不记得自己去温习,温故而知新哦!如果学会了,下面学习3dmax插件神器小技巧的第四章建模篇的第4.16小节:怎么用3dmax插件神器去完成背…...
品牌自适应网站建设/开发一个网站的步骤流程
/** JDK1.5后出现的特性,自动装箱和自动拆箱* 自动装箱: 基本数据类型,直接变成对象* 自动拆箱: 对象中的数据变回基本数据类型* 方便使用* 自动装箱和拆箱弊端,可能出现空指针异常*/ public class IntegerDemo_2 {public static void main(String[] args) {function…...
百度做网站价格/资深seo顾问
一、题目:判断一个链表是否为回文结构 简单思路:时间O(N),空间O(N) 采用栈来存储链表值,再从栈中弹出值(逆序),如果和链表顺序值一样,则为回文结构…...
网站推广中h1标签的重要性/东莞seo优化案例
本文讲的是傻瓜,社区才是关键啊!,【编者的话】本文是Docker用户命名空间功能实现作者写的一篇关于开源社区的文章。他的观点是一切的成功都离不开社区的鼎力支持,所以当你加入一个开源项目的时候,尽量去真正的参与其中,…...
网站建设手机端管网/腾讯广告推广平台入口
题目描述: 一个 n 行 n 列的蛇形矩阵可由如下方法生成: 从矩阵的左上角(第 1 行第 1 列)出发,初始时向右移动;如果前方是未曾经过的格子,则继续前进,否则右转;重复上述操…...