当前位置: 首页 > news >正文

对话系统之解码策略(Top-k Top-p Temperature)

一、案例分析

在自然语言任务中,我们通常使用一个预训练的大模型(比如GPT)来根据给定的输入文本(比如一个开头或一个问题)生成输出文本(比如一个答案或一个结尾)。为了生成输出文本,我们需要让模型逐个预测每个 token ,直到达到一个终止条件(如一个标点符号或一个最大长度)。在每一步,模型会给出一个概率分布,表示它对下一个单词的预测。

假设我们训练了一个描述个人生活喜好的模型,我们想让它来补全“我最喜欢漂亮的___”这个句子。模型可能会给出下面的概率分布:

那么,我们应该如何从这个概率分布中选择下一个单词呢?以下是几种常用的方法:

  • 贪心解码(Greedy Decoding):直接选择概率最高的单词。这种方法简单高效,但是可能会导致生成的文本过于单调和重复。
  • 随机采样(Random Sampling):按照概率分布随机选择一个单词。这种方法可以增加生成的多样性,但是可能会导致生成的文本不连贯和无意义。
  • 集束搜索(Beam Search):在每一个时间步,不再只保留当前概率最高的一个单词,而是按照概率从高到低排序,保留前num_beams个单词。这种方法可以平衡生成的质量和多样性,但也难以避免单词重复的问题。我们将在后续章节详细介绍集束搜索。

针对上述方法各自的问题,我们需要思考如何让模型生成的回复用词更加活跃呢?为此,研究人员引入了 top-k 采样、 top-p 采样和temperature采样。

二、top-k采样

在上面的例子中,如果使用贪心策略,那么选择的单词必然就是“女孩”。top-k 采样是对前面“贪心策略”的优化,它从排名前 k 的单词中进行随机抽样,允许其他概率的单词也有机会被选中。在很多情况下,这种抽样带来的随机性有助于提高生成质量。

下面是 top-k 采样的例子:

上图示例中,我们将k设置为3,那么模型将只从女孩、鞋子、大象中选择一个单词,而不考虑西瓜这个单词。具体来说,模型首先筛选似然值前三的单词,然后根据这三个单词的似然值重新计算采样概率,最后根据概率进行抽样。

通过调整 k 的大小,即可控制采样列表的大小。“贪心策略”其实就是 k = 1的 top-k 采样。

总结一下,top-k 采样有以下优点:

  • 它可以通过调整 k 的大小来控制生成的多样性和质量。一般来说,k 越大,生成的多样性越高,但是生成的质量越低;k 越小,生成的质量越高,但是生成的多样性越低。因此,我们可以根据不同的任务和场景来选择合适的k 值。
  • 它可以与其他解码策略结合使用,例如温度调节(Temperature Scaling)、重复惩罚(Repetition Penalty)、长度惩罚(Length Penalty)等,来进一步优化生成的效果。

但是 top-k采样也有一些缺点,比如:

  • 它可能会导致生成的文本不符合常识或逻辑。这是因为 top-k 采样只考虑了单词的概率,而没有考虑单词之间的语义和语法关系。
  • 它可能会导致生成的文本过于简单或无聊。这是因为 top-k 采样只考虑了概率最高的 k 个单词,而没有考虑其他低概率但有意义或有创意的单词。例如,如果输入文本是“我喜欢吃”,那么即使苹果、饺子和火锅都是合理的选择,也不一定是最有趣或最惊喜的选择,因为可能用户更喜欢吃一些特别或新奇的食物。

因此,我们通常会考虑 top-k采样和其它策略结合,比如 top-p采样。

三、top-p采样

top-k 采样有一个缺陷,那就是“k 值取多少是最优的?”这是非常难以确定。于是出现了动态设置单词候选列表大小策略,即top-p采样,又名核采样(Nucleus Sampling)。这也是chatGPT所使用的采样方法。

top-p 采样的思路是:预先设置一个概率界限 p 值,在每一步,将候选单词按照概率从高到低排序,然后依次选择单词构造集合。集合的构造原则是:如果加上当前单词,总概率小于或等于p,那么将当前单词放入集合;如果加上当前单词,总概率大于p,那么丢弃当前单词,集合构造到此结束。模型将从集合中随机选择一个单词,而不考虑集合之外的单词。

上图展示了 p 值为 0.9 的 Top-p 采样的效果。值得注意的是,我们可以同时使用 top-k采样 和 top-p采样,top-p 将在 top-k 之后起作用。

四、Temperature采样

Temperature 采样受统计热力学的启发,高温意味着更可能遇到低能态。在概率模型中,logits 扮演着能量的角色,我们可以通过将 logits 除以温度来实现Temperature 采样,然后将其输入 Softmax 函数进一步获得采样概率。

Temperature 采样中的温度与玻尔兹曼分布有关,其公式如下所示:

\rho_{i} = \frac{1}{Q}e^{-\epsilon_{i}/kT}=\frac{e^{-\epsilon_{i}/kT}}{\sum_{j=1}^{M} e^{-\epsilon_{j}/kT}}

其中 \rho _{i} 是状态 i 的概率, \epsilon _{i} 是状态 i 的能量, k 是波兹曼常数, T 是系统的温度,M 是系统所能到达的所有量子态的数目。

有机器学习背景的朋友第一眼看到上面的公式会觉得似曾相识。没错,上面的公式跟 Softmax 函数 相似:

Softmax(z_{i}) = \frac{e^{z_{i}}}{\sum_{c=1}^{C}e^{z_{c}}}

本质上就是在 Softmax 函数上添加了温度(T)这个参数。Logits 根据我们的温度值进行缩放,然后传递到 Softmax 函数以计算新的概率分布。

上面“我喜欢漂亮的___”这个例子中,初始温度 T=1 ,我们直观看一下 T 取不同值的情况下,概率会发生什么变化:

通过上图我们可以清晰地看到,随着温度的降低,模型愈来愈越倾向选择”女孩“;另一方面,随着温度的升高,分布变得越来越均匀。当T=50时,选择”西瓜“的概率已经与选择”女孩“的概率相差无几了。 

通常来说,温度与模型的“创造力”有关。但事实并非如此。温度只是调整单词的概率分布。其最终的宏观效果是,在较低的温度下,我们的模型更具确定性,而在较高的温度下,则不那么确定。 

五、联合采样(top-k & top-p & Temperature) 

通常我们是将 top-k、top-p、Temperature 联合起来使用。使用的先后顺序是 top-k->top-p->Temperature。

我们还是以前面的例子为例。

首先我们设置 top-k = 3,表示保留概率最高的3个 单词。这样就会保留女孩、鞋子、大象这3个 单词:

  • 女孩:0.664
  • 鞋子:0.199
  • 大象:0.105

接下来,我们可以使用 top-p 的方法,构造集合,也就是选取女孩和鞋子这两个单词。接着我们使用 Temperature = 0.7 进行归一化,将这两个单词的似然值变为:

  • 女孩:0.660
  • 鞋子:0.340

接着,我们可以从上述分布中进行随机采样,选取一个单词作为最终的生成结果。

六、补充

6.1 Beam Search

本部分作为补充内容,供感兴趣的读者阅读。

Beam Search是对贪心策略一个改进。思路也很简单,就是稍微放宽一些考察的范围。在每一个时间步,不再只保留当前概率最高的1个单词,而是保留num_beams个。当num_beams=1时集束搜索就退化成了贪心搜索。

下图是一个实际的例子,每个时间步有ABCDE共5种可能的输出,图中的num_beams=2,也就是说每个时间步都会保留到当前步为止条件概率最优的2个序列。

  • 在第一个时间步,A和C是最优的两个,因此得到了两个结果[A],[C],其他三个就被抛弃了;
  • 第二步会基于这两个结果继续进行生成,在A这个分支可以得到5个候选单词,[AA],[AB],[AC],[AD],[AE],C也同理得到5个,此时会对这10个进行统一排名,再保留最优的两个,即图中的[AB][CE]
  • 第三步同理,也会从新的10个候选人里再保留最好的两个,最后得到了[ABD],[CED]两个结果。

可以发现,beam search在每一步需要考察的候选人数量是贪心搜索的num_beams倍,因此是一种牺牲时间换性能的方法。

6.2 温度(Temperature)参数介绍

温度(Temperature)是一个用于控制人工智能生成文本的创造力水平的参数。通过调整“温度”,您可以影响AI模型的概率分布,使文本更加集中或更多样化。

考虑以下示例:AI 模型必须完成句子“一只猫正在____”。下一个字具有以下标记概率:

玩:0.5

睡:0.25

吃:0.15

驾:0.05

飞:0.05

  • 低温(例如0.2):AI模型变得更加专注和确定性,选择概率最高的标记,例如“玩”。
  • 中温(例如1.0):AI模型在创造力和专注度之间保持平衡,根据概率选择标记,没有明显的偏见,例如“玩”、“睡”或“吃”。
  • 高温(例如2.0):AI模型变得更加冒险,增加了选择不太可能的标记的机会,例如“驾”和“飞”。

如果温度较低,则对除对数概率最高的类之外的其他类进行采样的概率会很小,并且模型可能会输出最正确的文本,但相当无聊,变化较小。

如果温度高,模型可以以相当高的概率输出,或者说不是概率最高的。生成的文本会更加多样化,但出现语法错误和生成废话的可能性更高。

 

相关文章:

对话系统之解码策略(Top-k Top-p Temperature)

一、案例分析 在自然语言任务中,我们通常使用一个预训练的大模型(比如GPT)来根据给定的输入文本(比如一个开头或一个问题)生成输出文本(比如一个答案或一个结尾)。为了生成输出文本&#xff0c…...

《面向机器学习的数据标注规程》摘录

说明:本文使用的标准是2019年的团体标准,最新的国家标准已在2023年发布。 3 术语和定义 3.2 标签 label 标识数据的特征、类别和属性等。 3.4 数据标注员 data labeler 对待标注数据进行整理、纠错、标记和批注等操作的工作人员。 【批注】按照定义…...

VGG(pytorch)

VGG:达到了传统串型结构深度的极限 学习VGG原理要了解CNN感受野的基础知识 model.py import torch.nn as nn import torch# official pretrain weights model_urls {vgg11: https://download.pytorch.org/models/vgg11-bbd30ac9.pth,vgg13: https://download.pytorch.org/mo…...

celery/schedules.py源码精读

BaseSchedule类 基础调度类,它定义了一些调度任务的基本属性和方法。以下是该类的主要部分的解释: __init__(self, nowfun: Callable | None None, app: Celery | None None):初始化方法,接受两个可选参数,nowfun表…...

单片机上位机(串口通讯C#)

一、简介 用C#编写了几个单片机上位机模板。可定制!!! 二、效果图...

初识Flask

摆上中文版官方文档网站:https://flask.github.net.cn/quickstart.html 开启实验之路~~~~~~~~~~~~~ from flask import Flaskapp Flask(__name__) # 使用修饰器告诉flask触发函数的URL,绑定URL,后面的函数用于返回用户在浏览器上看到的内容…...

JeecgBoot jmreport/queryFieldBySql RCE漏洞复现

0x01 产品简介 Jeecg Boot(或者称为 Jeecg-Boot)是一款基于代码生成器的开源企业级快速开发平台,专注于开发后台管理系统、企业信息管理系统(MIS)等应用。它提供了一系列工具和模板,帮助开发者快速构建和部署现代化的 Web 应用程序。 0x02 漏洞概述 Jeecg Boot jmrepo…...

机器学习---模型评估

1、混淆矩阵 对以上混淆矩阵的解释: P:样本数据中的正例数。 N:样本数据中的负例数。 Y:通过模型预测出来的正例数。 N:通过模型预测出来的负例数。 True Positives:真阳性,表示实际是正样本预测成正样…...

【机器学习】应用KNN实现鸢尾花种类预测

目录 前言 一、K最近邻(KNN)介绍 二、鸢尾花数据集介绍 三、鸢尾花数据集可视化 四、鸢尾花数据分析 总结 🌈嗨!我是Filotimo__🌈。很高兴与大家相识,希望我的博客能对你有所帮助。 💡本文由Fil…...

ACL和NAT

目录 一.ACL 1.概念 2.原理 3.应用 4.种类 5.通配符 1.命令 2.区别 3.例题 4.应用原则 6.实验 1.实验目的 2.实验拓扑 3.实验步骤 7.实验拓展 1.实验目的 2.实验步骤 3.测试 二.NAT 1.基本理论 2.作用 3.分类 静态nat 动态nat NATPT NAT Sever Easy-IP…...

MX6ULL学习笔记(十二)Linux 自带的 LED 灯

前言 前面我们都是自己编写 LED 灯驱动,其实像 LED 灯这样非常基础的设备驱动,Linux 内 核已经集成了。Linux 内核的 LED 灯驱动采用 platform 框架,因此我们只需要按照要求在设备 树文件中添加相应的 LED 节点即可,本章我们就来学…...

Qt容器QToolBox工具箱

# QToolBox QToolBox是Qt框架中的一个窗口容器类,常用的几个函数有: ​setCurrentIndex(int index):设置当前显示的页面索引。可以通过调用该函数,将指定索引的页面设置为当前显示的页面。 addItem(QWidget * widget, const QString & text):向QToolBox中添加一个页面…...

华为实训课笔记

华为实训 12/1312/14 12/13 ping 基于ICMP协议&#xff0c;用来进行可达性测试 ping 目的IP地址/设备域名&#xff08;主机名&#xff09; 如果能收到 reply 回复&#xff0c;则表示双方可以正常通信 <Huawei> 用户视图&#xff0c;只能做查询和一些简单的资源调用&…...

基于java 的经济开发区管理系统设计与实现(源码+调试)

项目描述 临近学期结束&#xff0c;还是毕业设计&#xff0c;你还在做java程序网络编程&#xff0c;期末作业&#xff0c;老师的作业要求觉得大了吗?不知道毕业设计该怎么办?网页功能的数量是否太多?没有合适的类型或系统?等等。今天给大家介绍一篇基于java 的经济开发区管…...

外包干了3个月,技术退步明显。。。

先说一下自己的情况&#xff0c;本科生生&#xff0c;19年通过校招进入广州某软件公司&#xff0c;干了接近4年的功能测试&#xff0c;今年年初&#xff0c;感觉自己不能够在这样下去了&#xff0c;长时间呆在一个舒适的环境会让一个人堕落!而我已经在一个企业干了四年的功能测…...

详细教程 - 从零开发 Vue 鸿蒙harmonyOS应用 第一节

关于使用Vue开发鸿蒙应用的教程,我这篇之前的博客还不够完整和详细。那么这次我会尝试写一个更加完整和逐步的指南,从环境准备,到目录结构,再到关键代码讲解,以及调试和发布等,希望可以让大家详实地掌握这个过程。 一、准备工作 下载安装 DevEco Studio 下载地址&#xff1a;…...

R语言对医学中的自然语言(NLP)进行机器学习处理(1)

什么是自然语言(NLP)&#xff0c;就是网络中的一些书面文本。对于医疗方面&#xff0c;例如医疗记录、病人反馈、医生业绩评估和社交媒体评论,可以成为帮助临床决策和提高质量的丰富数据来源。如互联网上有基于文本的数据(例如,对医疗保健提供者的社交媒体评论),这些数据我们可…...

什么是CI/CD?如何在PHP项目中实施CI/CD?

CI/CD&#xff08;持续集成/持续交付或持续部署&#xff09;是一种软件开发和交付方法&#xff0c;它旨在通过自动化和持续集成来提高开发速度和交付质量。以下是CI/CD的基本概念和如何在PHP项目中实施它的一般步骤&#xff1a; 持续集成&#xff08;Continuous Integration -…...

玩转Docker(四):容器指令、生命周期、资源限制、容器化支持、常用命令

文章目录 一、容器指令1.运行2.启动/停止/重启3.暂停/恢复4.删除 二、生命周期三、资源限制1.内存限额2.CPU限额3.磁盘读写带宽限额 四、cgroup和namespace五、常用命令 一、容器指令 1.运行 按用途容器大致可分为两类&#xff1a;服务类容器和工具类的容器。 服务类容器&am…...

回归预测 | MATLAB实现CHOA-BiLSTM黑猩猩优化算法优化双向长短期记忆网络回归预测 (多指标,多图)

回归预测 | MATLAB实现CHOA-BiLSTM黑猩猩优化算法优化双向长短期记忆网络回归预测 &#xff08;多指标&#xff0c;多图&#xff09; 目录 回归预测 | MATLAB实现CHOA-BiLSTM黑猩猩优化算法优化双向长短期记忆网络回归预测 &#xff08;多指标&#xff0c;多图&#xff09;效果…...

XML Group端口详解

在XML数据映射过程中&#xff0c;经常需要对数据进行分组聚合操作。例如&#xff0c;当处理包含多个物料明细的XML文件时&#xff0c;可能需要将相同物料号的明细归为一组&#xff0c;或对相同物料号的数量进行求和计算。传统实现方式通常需要编写脚本代码&#xff0c;增加了开…...

电脑插入多块移动硬盘后经常出现卡顿和蓝屏

当电脑在插入多块移动硬盘后频繁出现卡顿和蓝屏问题时&#xff0c;可能涉及硬件资源冲突、驱动兼容性、供电不足或系统设置等多方面原因。以下是逐步排查和解决方案&#xff1a; 1. 检查电源供电问题 问题原因&#xff1a;多块移动硬盘同时运行可能导致USB接口供电不足&#x…...

Frozen-Flask :将 Flask 应用“冻结”为静态文件

Frozen-Flask 是一个用于将 Flask 应用“冻结”为静态文件的 Python 扩展。它的核心用途是&#xff1a;将一个 Flask Web 应用生成成纯静态 HTML 文件&#xff0c;从而可以部署到静态网站托管服务上&#xff0c;如 GitHub Pages、Netlify 或任何支持静态文件的网站服务器。 &am…...

Cinnamon修改面板小工具图标

Cinnamon开始菜单-CSDN博客 设置模块都是做好的&#xff0c;比GNOME简单得多&#xff01; 在 applet.js 里增加 const Settings imports.ui.settings;this.settings new Settings.AppletSettings(this, HTYMenusonichy, instance_id); this.settings.bind(menu-icon, menu…...

跨链模式:多链互操作架构与性能扩展方案

跨链模式&#xff1a;多链互操作架构与性能扩展方案 ——构建下一代区块链互联网的技术基石 一、跨链架构的核心范式演进 1. 分层协议栈&#xff1a;模块化解耦设计 现代跨链系统采用分层协议栈实现灵活扩展&#xff08;H2Cross架构&#xff09;&#xff1a; 适配层&#xf…...

C# 类和继承(抽象类)

抽象类 抽象类是指设计为被继承的类。抽象类只能被用作其他类的基类。 不能创建抽象类的实例。抽象类使用abstract修饰符声明。 抽象类可以包含抽象成员或普通的非抽象成员。抽象类的成员可以是抽象成员和普通带 实现的成员的任意组合。抽象类自己可以派生自另一个抽象类。例…...

【决胜公务员考试】求职OMG——见面课测验1

2025最新版&#xff01;&#xff01;&#xff01;6.8截至答题&#xff0c;大家注意呀&#xff01; 博主码字不易点个关注吧,祝期末顺利~~ 1.单选题(2分) 下列说法错误的是:&#xff08; B &#xff09; A.选调生属于公务员系统 B.公务员属于事业编 C.选调生有基层锻炼的要求 D…...

unix/linux,sudo,其发展历程详细时间线、由来、历史背景

sudo 的诞生和演化,本身就是一部 Unix/Linux 系统管理哲学变迁的微缩史。来,让我们拨开时间的迷雾,一同探寻 sudo 那波澜壮阔(也颇为实用主义)的发展历程。 历史背景:su的时代与困境 ( 20 世纪 70 年代 - 80 年代初) 在 sudo 出现之前,Unix 系统管理员和需要特权操作的…...

Android15默认授权浮窗权限

我们经常有那种需求&#xff0c;客户需要定制的apk集成在ROM中&#xff0c;并且默认授予其【显示在其他应用的上层】权限&#xff0c;也就是我们常说的浮窗权限&#xff0c;那么我们就可以通过以下方法在wms、ams等系统服务的systemReady()方法中调用即可实现预置应用默认授权浮…...

Android 之 kotlin 语言学习笔记三(Kotlin-Java 互操作)

参考官方文档&#xff1a;https://developer.android.google.cn/kotlin/interop?hlzh-cn 一、Java&#xff08;供 Kotlin 使用&#xff09; 1、不得使用硬关键字 不要使用 Kotlin 的任何硬关键字作为方法的名称 或字段。允许使用 Kotlin 的软关键字、修饰符关键字和特殊标识…...