第七章.集成学习(Ensemble Learning)—袋装(bagging),随机森林(Random Forest)
第七章.集成学习 (Ensemble Learning)
7.1 集成学习—袋装(bagging),随机森林(Random Forest)
集成学习就是组合多个学习器,最后得到一个更好的学习器。
1.常见的4种集成学习算法
- 个体学习器之间不存在强依赖关系,袋装(bagging)
- 随机森林(Random Forest)
- 个体学习器之间存在强依赖关系,提升(boosting)
- Stacking
2.袋装(bagging)
bagging也叫bootstrap aggregating,是原始数据集选择S次后得到S个新数据集的一种技术,是一种有放回的抽样。
1).示例:
①.原始训练数据集:{0,1,2,3,4,5,6,7,8,9}
②.Bootstrap采样:
{7,2,6,7,5,4,8,8,1,0}—未采样3,9
{1,3,8,0,3,5,8,0,1,9}—未采样2,4,6,7
{2,9,4,2,7,9,3,0,1,0}—未采样5,6,8
③.图像
- 从数据D中抽样K组新的数据集,每个数据集可以应用不同的算法进行建模(KNN,神经网络),共有K个模型,引入的新数据使用K个模型进行预测,然后组合投票决定最终输出结果。
- 假设图中是分类模型,左图有两个分类模型,两个分类模型组合起来可能是右图的决策边界
2).代码实现:
使用bagging后的测试结果有可能有提升,有可能不变,也有可能下降,在数据集比较复杂的情况下,建议使用bagging。
from sklearn import tree
from sklearn import neighbors
from sklearn import datasets
from sklearn.ensemble import BaggingClassifier
from sklearn.model_selection import train_test_split
import numpy as np
import matplotlib.pyplot as plt# 绘图
def plot(model):x_min, x_max = x_data[:, 0].min() - 1, x_data[:, 0].max() + 1y_min, y_max = x_data[:, 1].min() - 1, x_data[:, 1].max() + 1# 生成网格矩阵xx, yy = np.meshgrid(np.arange(x_min, x_max, 0.02), np.arange(y_min, y_max, 0.02))z = model.predict(np.c_[xx.ravel(), yy.ravel()])z = z.reshape(xx.shape)# 绘制等高线cs = plt.contourf(xx, yy, z)# 加载数据
iris = datasets.load_iris()
x_data = iris.data[:, :2]
y_data = iris.target# 数据切分
x_train, x_test, y_train, y_test = train_test_split(x_data, y_data)# KNN模型
knn = neighbors.KNeighborsClassifier()
knn.fit(x_train, y_train)
knn_accuracy = knn.score(x_test, y_test)
print('knn_accuracy:', knn_accuracy)# DicisionTree模型
dtree = tree.DecisionTreeClassifier()
dtree.fit(x_train, y_train)
dtree_accuracy = dtree.score(x_test, y_test)
print('dtree_accuracy:', dtree_accuracy)# 绘制bagging_knn分类模型
bagging_knn = BaggingClassifier(knn, n_estimators=100)
bagging_knn.fit(x_train, y_train)
bagging_knn_accuracy = bagging_knn.score(x_test, y_test)
print('bagging_knn_accuracy:', bagging_knn_accuracy)# 绘制bagging_dtree分类模型
bagging_dtree = BaggingClassifier(dtree, n_estimators=100)
bagging_dtree.fit(x_train, y_train)
bagging_dtree_accuracy = bagging_dtree.score(x_test, y_test)
print('bagging_dtree_accuracy:', bagging_dtree_accuracy)# 绘制knn分类模型
plt.subplot(2, 2, 1)
plot(knn)
plt.scatter(x_data[:, 0], x_data[:, 1], c=y_data)# 绘制决策树分类模型
plt.subplot(2, 2, 2)
plot(dtree)
plt.scatter(x_data[:, 0], x_data[:, 1], c=y_data)# 绘制bagging_knn分类模型
plt.subplot(2, 2, 3)
plot(bagging_knn)
plt.scatter(x_data[:, 0], x_data[:, 1], c=y_data)# 绘制bagging_dtree分类模型
plt.subplot(2, 2, 4)
plot(bagging_dtree)
plt.scatter(x_data[:, 0], x_data[:, 1], c=y_data)plt.show()
3).结果展示:
- 数据结果
- 图像结果
3.随机森林(Random Forest)
1).公式:
RF = 决策树 + Bagging + 随机属性选择
2).图像表示:
3).RF算法流程
①.样本的随机:从样本集中用bagging的方式,随机选择n个样本。
②.特征的随机:从所有属性d中随机选择k个属性(k<d),然后从k个属性中选择最佳分割属性作为节点建立CART决策树。
③.重复以上两个步骤m次。建立m颗CART决策树
④.这m颗CART决策树形成随机森林,通过投票表决结果,决定数据属于哪一类。
4).代码实现:
from sklearn import tree
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
import numpy as np
import matplotlib.pyplot as plt# 绘制图像
def plot(model):x_min, x_max = x_data[:, 0].min() - 1, x_data[:, 0].max() + 1y_min, y_max = x_data[:, 1].min() - 1, x_data[:, 1].max() + 1# 生成网格矩阵xx, yy = np.meshgrid(np.arange(x_min, x_max, 0.02), np.arange(y_min, y_max, 0.02))z = model.predict(np.c_[xx.ravel(), yy.ravel()])z = z.reshape(xx.shape)cs = plt.contourf(xx, yy, z)# 加载数据
data = np.genfromtxt('D:\\Data\\LR-testSet2.txt', delimiter=',')# 数据切分
x_data = data[:, :-1]
y_data = data[:, -1]# 测试集和训练集切分
x_train, x_test, y_train, y_test = train_test_split(x_data, y_data, test_size=0.5)# 决策树模型
dtree = tree.DecisionTreeClassifier()
dtree.fit(x_train, y_train)
dtree_accuracy = dtree.score(x_test, y_test)
print('dtree_accuracy:', dtree_accuracy)# 随机森林
RF = RandomForestClassifier(n_estimators=50)
RF.fit(x_train, y_train)
RF_accuracy = RF.score(x_test, y_test)
print('RF_accuracy:', RF_accuracy)# 绘制决策树模型
plt.subplot(1, 2, 1)
plot(dtree)
plt.scatter(x_data[:, 0], x_data[:, 1], c=y_data)# 绘制随机森林模型
plt.subplot(1, 2, 2)
plot(RF)
plt.scatter(x_data[:, 0], x_data[:, 1], c=y_data)plt.show()
5).结果展示:
- 数据展示:
- 图像展示:
相关文章:
第七章.集成学习(Ensemble Learning)—袋装(bagging),随机森林(Random Forest)
第七章.集成学习 (Ensemble Learning) 7.1 集成学习—袋装(bagging),随机森林(Random Forest) 集成学习就是组合多个学习器,最后得到一个更好的学习器。 1.常见的4种集成学习算法 个体学习器之间不存在强依赖关系,袋装(bagging)…...
Java_面向对象
Java_面向对象 1.面向对象概述 面向对象是一种符合人类思想习惯的编程思想。显示生活中存在各种形态的不同事物,这些食物存在着各种各样的联系。在程序中使用对象来映射现实中的事物,使用对象的关系来描述事物之间的关系,这种思想就是面…...
【IoT】智能烟雾报警器
设计简介 硬件设计由AT89C51单片机、DS18B20温度传感器、4位共阳数码管、电源模块、报警模块、按键模块、MQ-2烟雾检测模块和ADC0832模数转换模块组成。 烟雾传感器MQ-2检测空气中的烟雾气体,通过ADC0832进行数据转换,经过单片机的运算处理后在数码管上…...
Python实现定时执行脚本(5)
前言 本文是该专栏的第17篇,后面会持续分享python的各种干货知识,值得关注。 笔者在前面有详细介绍过几种使用python实现定时执行任务的方法,可以说都是简单易上手的那种。而本文,再来详细介绍另外一种定时方法,那就是利用任务框架APScheduler(advanceded python schedu…...
JavaSe第4次笔记
1.转义字符和编程语言无关。 2.斜杠(\)需要转义,反斜杠(/)不需要转义。 3.不能做switch的参数的数据类型:long float double boolean( String可以)。 4.输入的写法:Scanner(回车自动带头文件(import java.util.Scanner;)) Scanner scan …...
epoll机制
预备知识 文件描述符file descriptor 文件描述符是Linux系统中对文件、套接字等I/O资源的抽象,每个打开的文件或套接字都有一个唯一的文件描述符。应用程序可以使用文件描述符来读写文件或进行网络通信。 epoll允许程序监控多个文件描述符,以便在这些…...
Java使用不同方式获取两个集合List的交集、补集、并集(相加)、差集(相减)
1 明确概念首先知道几个单词的意思:并集 union交集 intersection补集 complement析取 disjunction减去 subtract1.1 并集对于两个给定集合A、B,由两个集合所有元素构成的集合,叫做A和B的并集。记作:AUB 读作“A并B”例&#…...
【Android笔记80】Android之Retrofit适配器和文件上传下载
这篇文章,主要介绍Android之Retrofit适配器和文件上传下载。 目录 一、Retrofit适配器 1.1、Retrofit适配器 (1)引入RxJava依赖 (2)定义接口...
Nodejs模块化
1.模块化 1.1.模块化的基本概念 模块化是指解决一个复杂问题时,自顶向下逐层把系统划分为若干模块的过程。对于整个系统而言,模块是可组合、分解和更换的单元。 1.2 编程中的模块化 编程领域的模块化就是把一个大文件拆成独立并相互依赖的多个小模块…...
C++STL基础
STL基础 诞生 cpp的面向对象和泛型编程的思想本质就是提高复用性诞生了STL库 基本概念 STL标准模板库STL从广义上分为容器、算法及迭代器容器和算法之间通过迭代器进行连接STL几乎所有的代码都采用了模板类或者模板函数 基本组件 容器、算法、迭代器、仿函数、适配器、空间配置…...
数学建模经验【更新中】
数学建模简单入门 一、 分工 3人,1人论文,1人代码主力,1人论文代码(前一半时间主代码,后一半时间主论文) Tips: 不养闲人,论文必须要在对代码和题目极其了解并且能跟上队友思路的情况下才能写…...
【python学习笔记】:Excel 数据的封装函数
对比其它编程语言,我们都知道Python最大的优势是代码简单,有丰富的第三方开源库供开发者使用。伴随着近几年数据分析的热度,Python也成为最受欢迎的编程语言之一。而对于数据的读取和存储,对于普通人来讲,除了数据库之…...
如何获取或设置CANoe以太网网卡信息(GET篇)
CAPL提供了一系列函数用来操作CANoe网卡。但是,但是,首先需要明确一点,不管是获取网卡信息,还是设置网卡信息,只能访问CAPL程序所在的节点下的网卡,而不是节点所在的以太网通道下的所有网卡 关于第一张图中,Class节点下,有三个网卡:Ethernet1、VLAN 1.100、VLAN 1.200…...
“终于我从字节离职了...“一个年薪50W的测试工程师的自白...
我递上了我的辞职信,不是因为公司给的不多,也不是因为公司待我不好,但是我觉得,我每天看中我憔悴的面容,每天晚上拖着疲惫的身体躺在床上,我都不知道人生的意义,是赚钱吗?是为了更好…...
【Spring】八种常见Bean加载方式
🚩本文已收录至专栏:Spring家族学习 一.引入 (1) 概述 关于bean的加载方式,spring提供了各种各样的形式。因为spring管理bean整体上来说就是由spring维护对象的生命周期,所以bean的加载可以从大的方面划分成2种形式ÿ…...
第五回:样式色彩秀芳华
import matplotlib as mpl import matplotlib.pyplot as plt import numpy as np第五回详细介绍matplotlib中样式和颜色的使用,绘图样式和颜色是丰富可视化图表的重要手段,因此熟练掌握本章可以让可视化图表变得更美观,突出重点和凸显艺术性。…...
关于@Test单元测试
1、关于doReturndoReturn(new Test()).when(testService).updateStatusByLock(any(), any());在单元测试里这个方法可以执行到这里之间跳过不去执行,返回你想要的返回值2、关于givengiven(user.getName(any())).willReturn("张三");在单元测试里这个方法 …...
【项目实战】WebFlux整合r2dbc-mysql实战
一、背景 Webflux虽然是响应式的,但是没办法,JDBC是基于阻塞IO实现的,所以无法真正的威力发挥不出来。 但是,Webflux一旦整合了R2DBC之后,那么它将不再受限于数据库连接了,真正打通了响应式应用的任督二脉,性能才被释放。 当然,除了Spring推出的R2DBC协议,还有Orac…...
go版本分布式锁redsync使用教程
redsync使用教程前言redsync结构Pool结构Mutex结构acquire加锁操作release解锁操作redsync包的使用前言 在编程语言中锁可以理解为一个变量,该变量在同一时刻只能有一个线程拥有,以便保护共享数据在同一时刻只有一个线程去操作。对于高可用的分布式锁应…...
大数据之Hudi数据湖_大数据治理_简介_发展历史_特性_应用场景---大数据之Hudi数据湖工作笔记0001
支持hive spark flink 美国公司开发的~ 都在使用,这些企业都在用 支持hadoop的,更新,插入,删除 和数据增量处理 支持流式数据处理. hive是离线数仓 hive不支持事物 insert overwrite 底层后来通过这种方式支持了事物 insert overwrite处理数据很低效,因为更新是基于覆盖实现…...
射频功率放大器基于纵向导波的杆状构件腐蚀诊断方法的研究
实验名称:基于纵向导波的杆状构件腐蚀诊断方法研究方向:无损探伤测试设备:信号号发生器、安泰ATA-8202功率放大器、数据采集卡、直流电源、超声探头、钢杆、前置放大器。实验过程:图:试验装置试验装置如图3.2所示。监测…...
Leedcode 二分查找 理解1
一个up的理解 一、二分查找基础例题 力扣https://leetcode.cn/problems/binary-search/ 二、二分查找模板问题 带搜索区间分为3个部分: 1、[mid],直接返回 2、[left,mid-1],设置边界right mid - 1 3、[mid1,right]&#x…...
【告别篇】大家好,再见了,我转行了,在筹备创业
前言 相信大家也一直看到我的博客没有更新过了,我其实很久没有打开过博客了,也就意味着我很长一段时间都在停滞不前,没有了学习的动力。 现在我上来是想跟大家告个别 : 很多粉丝宝宝的私信我看了,但是没有回…...
Java——岛屿数量
题目链接 leetcode在线oj题——岛屿数量 题目描述 给你一个由 ‘1’(陆地)和 ‘0’(水)组成的的二维网格,请你计算网格中岛屿的数量。 岛屿总是被水包围,并且每座岛屿只能由水平方向和/或竖直方向上相…...
《代码整洁之道》笔记
1章:专业人士要有专业人士素养,要有责任心,编写代码尽可能完善没有bug,有bug也要勇于承担。坚持学习,坚持练习,保证自己的专业技能。谦虚,相互学习,与顾客达成一致2章:说…...
个人网站如何集成QQ快捷登录功能?
目录 一、网站集成QQ快捷登录的好处 二、网站接入QQ快捷登录具体步骤 (1)登录到QQ互联官网 (2)进行个人开发者认证 (3)创建网站应用 (4)填写网站资料 三、如何在本地开发环境…...
从工厂打螺丝到月薪18k测试工程师,我该满足吗?
以前我比较喜欢小米那句“永远相信美好的事情即将发生”,后来发现如果不努力不可能有美好的事情发生!01高中毕业进厂5年,创业经商多次战败,为了生计辗转奔波高中毕业后我就进了工厂,第一份工作是做模具加工。从500元一…...
【相关分析-高阶绘图】MATLAB实现皮尔逊相关分析-散点直方图
虽然皮尔逊相关分析很常见,但如何更好的展现相关性、散点分布、柱状分布,以提升研究结果的美感和冲击感呢?本文拟通过MATLAB绘制包含散点分布、柱状分布、线性展示的散点直方图,有助于审稿人眼前一亮。 1、Pearson相关系数原理 Pearson相关系数(Pearson Correlation Co…...
Spark性能优化二 Shuffle机制分析
(一) 什么情况下发生shuffle 在MapReduce框架中,Shuffle是连接Map和Reduce之间的桥梁,Map阶段通过shuffle读取数据并输出到对应的Reduce;而Reduce阶段负责从Map端拉取数据并进行计算。在整个shuffle过程中,…...
软测入门(四)Appium-APP移动测试基础
Appium 用来测试手机程序。 测试方面: 功能测试安装卸载测试升级测试兼容测试 Android系统版本不同分辨率不同网络 网络切换、中断测试使用中来电话、短信横竖屏切换 环境搭建 Java安装(查资料)Android SDK安装,配置 HOME和P…...
网站框架图/seo权重是什么意思
设计模式与软件架构设计 .中国科学院软件所 2006 Software Engineering, 7th edition. Chapter 1 Slide 1议题.中国科学院软件所 2006 Software Engineering, 7th edition. Chapter 1 (1)面向对象软件架构设计思想(2)使用UML进行软…...
网站建设中 html/在线生成个人网站app
在我们安装了网站服务管理系统wdcp之后,在使用过程中可能会出现这样或那样的疑问,下面给大家整理几点出来,方便大家学习。还有不懂得话,可以去wdlinux论坛找找相关教程。 1、wdcp如何拒绝或阻止别人域名的恶意指向 因为备案原因,…...
定制网站建设案例课堂/湖南企业竞价优化服务
概述 UIView对象在屏幕中定义了一个复杂区域和界面来管理这个区域的内容 视图的职责:画图和动画。布局和子视图管理。事件处理。 1、创建一个视图对象 CGRect viewRect CGRectMake(10,10,100,100);UIView* myView [[UIView alloc] initWithFrame:viewRect];[self…...
推拿网站制作/海外游戏推广平台
因为下载zip的文件速度快,所以就使用了zip,zip格式的解压完后需要使用命令行安装,步骤大致如下: 1,首先创建一个文件叫mongo的文件,里面包含了数据库存放的目录以及日志,然后在指定的目录下创建…...
菠菜网站搭建怎么做/百度应用商店下载
一 列表类型内置方法 1.作用:存在多个元素 2.定义方式:[]内用逗号隔开任意数据类型的元素 3.方法 4.多个值or一个值:多个值 5.有序or无序:有序 6.可变or不可变:可变 name_list [jack,engo,nick] s_list list(sdfa) p…...
wordpress商业主题/培训网站有哪些
EasyNVR平台通过RTSP/Onvif与摄像头可以进行网络连接时,可以使用自带的Onvif探测实现摄像头的设备IP探测,成功后返回需要的视频流地址,就能实现摄像头的PTZ云台控制,PTZ控制包含转动、变焦、放大等操作。具体操作步骤大家可以查看…...