当前位置: 首页 > news >正文

动态规划——OJ题(一)

在这里插入图片描述


📘北尘_:个人主页

🌎个人专栏:《Linux操作系统》《经典算法试题 》《C++》 《数据结构与算法》

☀️走在路上,不忘来时的初心

文章目录

  • 一、第N个泰波那契数
    • 1、题目讲解
    • 2、思路讲解
    • 3、代码实现
  • 二、三步问题
    • 1、题目讲解
    • 2、思路讲解
    • 3、代码实现
  • 三、使用最小花费爬楼梯
    • 1、题目讲解
    • 2、思路讲解
    • 3、代码实现
  • 四、解码方法
    • 1、题目讲解
    • 2、思路讲解
    • 3、代码实现


一、第N个泰波那契数

1、题目讲解

在这里插入图片描述

2、思路讲解

  1. 状态表⽰:
    这道题可以「根据题⽬的要求」直接定义出状态表⽰:
    dp[i] 表⽰:第 i 个泰波那契数的值。
  2. 状态转移⽅程:
    题⽬已经⾮常贴⼼的告诉我们了:
    dp[i] = dp[i - 1] + dp[i - 2] + dp[i - 3]
  3. 初始化:
    从我们的递推公式可以看出, dp[i] 在 i = 0 以及 i = 1 的时候是没有办法进⾏推导的,因
    为 dp[-2] 或 dp[-1] 不是⼀个有效的数据。
    因此我们需要在填表之前,将 0, 1, 2 位置的值初始化。题⽬中已经告诉我们 dp[0] = 0,
    dp[1] = dp[2] = 1 。
  4. 填表顺序:
    毫⽆疑问是「从左往右」。
  5. 返回值:
    应该返回 dp[n] 的值。

3、代码实现

普通版

class Solution {
public:int tribonacci(int n) {if(n==0) return 0;if(n==1 || n==2) return 1;vector<int> dp(n+1);dp[0]=0,dp[1]=1,dp[2]=1;for(int i=3;i<=n;i++){dp[i]=dp[i-1]+dp[i-2]+dp[i-3];}return dp[n];}
};

空间优化版

class Solution {
public:int tribonacci(int n) {if(n==0) return 0;if(n==1 || n==2) return 1;int a=0,b=1,c=1,d=0;for(int i=3;i<=n;i++){d=a+b+c;a=b;b=c;c=d;}return d;}
};

二、三步问题

1、题目讲解

在这里插入图片描述

2、思路讲解

在这里插入图片描述

  1. 状态表⽰
    这道题可以根据「经验 + 题⽬要求」直接定义出状态表⽰:
    dp[i] 表⽰:到达 i 位置时,⼀共有多少种⽅法。
  2. 状态转移⽅程
    以 i 位置状态的最近的⼀步,来分情况讨论:
    如果 dp[i] 表⽰⼩孩上第 i 阶楼梯的所有⽅式,那么它应该等于所有上⼀步的⽅式之和:
    i. 上⼀步上⼀级台阶, dp[i] += dp[i - 1] ;
    ii. 上⼀步上两级台阶, dp[i] += dp[i - 2] ;
    iii. 上⼀步上三级台阶, dp[i] += dp[i - 3] ;
    综上所述, dp[i] = dp[i - 1] + dp[i - 2] + dp[i - 3] 。
    需要注意的是,这道题⽬说,由于结果可能很⼤,需要对结果取模。
    在计算的时候,三个值全部加起来再取模,即 (dp[i - 1] + dp[i - 2] + dp[i - 3])
    % MOD 是不可取的,同学们可以试验⼀下, n 取题⽬范围内最⼤值时,⽹站会报错 signed
    integer overflow 。
    对于这类需要取模的问题,我们每计算⼀次(两个数相加/乘等),都需要取⼀次模。否则,万⼀
    发⽣了溢出,我们的答案就错了。
  3. 初始化
    从我们的递推公式可以看出, dp[i] 在 i = 0, i = 1 以及 i = 2 的时候是没有办法进⾏
    推导的,因为 dp[-3] dp[-2] 或 dp[-1] 不是⼀个有效的数据。
    因此我们需要在填表之前,将 1, 2, 3 位置的值初始化。
    根据题意, dp[1] = 1, dp[2] = 2, dp[3] = 4 。
  4. 填表顺序
    毫⽆疑问是「从左往右」。
  5. 返回值
    应该返回 dp[n] 的值。

3、代码实现

class Solution {
public:int waysToStep(int n) {if(n==1 || n==2) return n;if(n==3)  return 4;const int MOD=1e9+7;vector<int> dp(n+1);dp[1]=1,dp[2]=2,dp[3]=4;for(int i=4;i<=n;i++){dp[i]= ((dp[i - 1] + dp[i - 2]) % MOD + dp[i - 3]) % MOD;}return dp[n];}
};

三、使用最小花费爬楼梯

1、题目讲解

在这里插入图片描述

2、思路讲解

方法一:

  1. 状态表⽰:
    这道题可以根据「经验 + 题⽬要求」直接定义出状态表⽰:
    第⼀种:以 i 位置为结尾,巴拉巴拉
    dp[i] 表⽰:到达 i 位置时的最⼩花费。(注意:到达 i 位置的时候, i 位置的钱不需要
    算上)
  2. 状态转移⽅程:
    根据最近的⼀步,分情况讨论:
    ▪ 先到达 i - 1 的位置,然后⽀付 cost[i - 1] ,接下来⾛⼀步⾛到 i 位置:
    dp[i - 1] + csot[i - 1] ;
    ▪ 先到达 i - 2 的位置,然后⽀付 cost[i - 2] ,接下来⾛⼀步⾛到 i 位置:
    dp[i - 2] + csot[i - 2] 。
  3. 初始化:
    从我们的递推公式可以看出,我们需要先初始化 i = 0 ,以及 i = 1 位置的值。容易得到
    dp[0] = dp[1] = 0 ,因为不需要任何花费,就可以直接站在第 0 层和第 1 层上。
  4. 填表顺序:
    根据「状态转移⽅程」可得,遍历的顺序是「从左往右」。
  5. 返回值:
    根据「状态表⽰以及题⽬要求」,需要返回 dp[n] 位置的值。

方法二:

  1. 状态表⽰:
    这道题可以根据「经验 + 题⽬要求」直接定义出状态表⽰:
    第⼆种:以 i 位置为起点,巴拉巴拉。
    dp[i] 表⽰:从 i 位置出发,到达楼顶,此时的最⼩花费。
  2. 状态转移⽅程:
    根据最近的⼀步,分情况讨论:
    ▪ ⽀付 cost[i] ,往后⾛⼀步,接下来从 i + 1 的位置出发到终点: dp[i + 1] +
    cost[i] ;
    ▪ ⽀付 cost[i] ,往后⾛两步,接下来从 i + 2 的位置出发到终点: dp[i + 2] +
    cost[i] ;
    我们要的是最⼩花费,因此 dp[i] = min(dp[i + 1], dp[i + 2]) + cost[i] 。
  3. 初始化:
    为了保证填表的时候不越界,我们需要初始化最后两个位置的值,结合状态表⽰易得: dp[n -
    1] = cost[n - 1], dp[n - 2] = cost[n - 2]
  4. 填表顺序:
    根据「状态转移⽅程」可得,遍历的顺序是「从右往左」。
  5. 返回值:
    根据「状态表⽰以及题⽬要求」,需要返回 dp[n] 位置的值。

3、代码实现

方法一:

class Solution {
public:int minCostClimbingStairs(vector<int>& cost) {int n=cost.size();vector<int> dp(n+1);dp[0]=0,dp[1]=0;for(int i=2;i<=n;i++){dp[i]=min(dp[i-1]+cost[i-1],dp[i-2]+cost[i-2]);}return dp[n];        }
};

方法二:

class Solution {
public:int minCostClimbingStairs(vector<int>& cost) {int n=cost.size();vector<int> dp(n);dp[n-1]=cost[n-1],dp[n-2]=cost[n-2];for(int i=n-3;i>=0;i--){dp[i]=cost[i]+min(dp[i+1],dp[i+2]);}return min(dp[0],dp[1]);}
};

四、解码方法

1、题目讲解

在这里插入图片描述
在这里插入图片描述

2、思路讲解

  1. 状态表⽰:
    根据以往的经验,对于⼤多数线性 dp ,我们经验上都是「以某个位置结束或者开始」做⽂章,这
    ⾥我们继续尝试「⽤ i 位置为结尾」结合「题⽬要求」来定义状态表⽰。
    dp[i] 表⽰:字符串中 [0,i] 区间上,⼀共有多少种编码⽅法。

  2. 状态转移⽅程:
    定义好状态表⽰,我们就可以分析 i 位置的 dp 值,如何由「前⾯」或者「后⾯」的信息推导出
    来。
    关于 i 位置的编码状况,我们可以分为下⾯两种情况:
    i. 让 i 位置上的数单独解码成⼀个字⺟;
    ii. 让 i 位置上的数与 i - 1 位置上的数结合,解码成⼀个字⺟。

    下⾯我们就上⾯的两种解码情况,继续分析:
    让 i 位置上的数单独解码成⼀个字⺟,就存在「解码成功」和「解码失败」两种情况:
    i. 解码成功:当 i 位置上的数在 [1, 9] 之间的时候,说明 i 位置上的数是可以单独解
    码的,那么此时 [0, i] 区间上的解码⽅法应该等于 [0, i - 1] 区间上的解码⽅法。因为 [0, i - 1] 区间上的所有解码结果,后⾯填上⼀个 i 位置解码后的字⺟就可以了。此时 dp[i] = dp[i - 1] ;

    ii. 解码失败:当 i 位置上的数是 0 的时候,说明 i 位置上的数是不能单独解码的,那么
    此时 [0, i] 区间上不存在解码⽅法。因为 i 位置如果单独参与解码,但是解码失败
    了,那么前⾯做的努⼒就全部⽩费了。此时 dp[i] = 0 。
    让 i 位置上的数与 i - 1 位置上的数结合在⼀起,解码成⼀个字⺟,也存在「解码成功」和「解码失败」两种情况:
    i. 解码成功:当结合的数在 [10, 26] 之间的时候,说明 [i - 1, i] 两个位置是可以
    解码成功的,那么此时 [0, i] 区间上的解码⽅法应该等于 [0, i - 2 ] 区间上的解码
    ⽅法,原因同上。此时 dp[i] = dp[i - 2] ;
    ii. 解码失败:当结合的数在 [0, 9] 和 [27 , 99] 之间的时候,说明两个位置结合后解码失败(这⾥⼀定要注意 00 01 02 03 04 … 这⼏种情况),那么此时 [0, i] 区间上的解码⽅法就不存在了,原因依旧同上。此时 dp[i] = 0 。

    综上所述: dp[i] 最终的结果应该是上⾯四种情况下,解码成功的两种的累加和(因为我们关⼼
    的是解码⽅法,既然解码失败,就不⽤加⼊到最终结果中去),因此可以得到状态转移⽅程
    ( dp[i] 默认初始化为 0 ):
    i. 当 s[i] 上的数在 [1, 9] 区间上时: dp[i] += dp[i - 1] ;
    ii. 当 s[i - 1] 与 s[i] 上的数结合后,在 [10, 26] 之间的时候: dp[i] +=
    dp[i - 2] ;
    如果上述两个判断都不成⽴,说明没有解码⽅法, dp[i] 就是默认值 0 。

3、代码实现

优化前:

class Solution {
public:int numDecodings(string s) {int n=s.size();vector<int> dp(n);dp[0]=s[0]!='0';if(n==1) return dp[0];if(s[1]!='0' && s[0]!='0') dp[1]++;int t=(s[0]-'0')*10+(s[1]-'0');if(t>=10 && t<=26) dp[1]++;for(int i=2;i<n;i++){if(s[i]!='0') dp[i]+=dp[i-1];int t=(s[i-1]-'0')*10+(s[i]-'0');if(t>=10 && t<=26) dp[i]+=dp[i-2];}return dp[n-1];}
};

优化后:

class Solution {
public:int n=s.size();vector<int> dp(n+1);dp[0]=1;dp[1]=s[1-1]!='0';for(int i=2;i<=n;i++){if(s[i-1]!='0') dp[i]+=dp[i-1];int t=(s[i-2]-'0')*10+(s[i-1]-'0');if(t>=10 && t<=26) dp[i]+=dp[i-2];}return dp[n];}
};

相关文章:

动态规划——OJ题(一)

&#x1f4d8;北尘_&#xff1a;个人主页 &#x1f30e;个人专栏:《Linux操作系统》《经典算法试题 》《C》 《数据结构与算法》 ☀️走在路上&#xff0c;不忘来时的初心 文章目录 一、第N个泰波那契数1、题目讲解2、思路讲解3、代码实现 二、三步问题1、题目讲解2、思路讲解…...

六:爬虫-数据解析之BeautifulSoup4

六&#xff1a;bs4简介 基本概念&#xff1a; 简单来说&#xff0c;Beautiful Soup是python的一个库&#xff0c;最主要的功能是从网页抓取数据官方解释如下&#xff1a; Beautiful Soup提供一些简单的、python式的函数用来处理导航、搜索、修改分析树等功能。 它是一个工具箱…...

音频筑基:总谐波失真THD+N指标

音频筑基&#xff1a;总谐波失真THDN指标 THDN含义深入理解 在分析音频信号中&#xff0c;THDN指标是我们经常遇到的概念&#xff0c;这里谈谈自己的理解。 THDN含义 首先&#xff0c;理解THD的定义&#xff1a; THD&#xff0c;Total Harmonic Distortion&#xff0c;总谐波…...

自动驾驶技术:驶向未来的智能之路

导言 自动驾驶技术正引领着汽车产业向着更安全、高效、智能的未来演进。本文将深入研究自动驾驶技术的核心原理、关键技术、应用场景以及对交通、社会的深远影响。 1. 简介 自动驾驶技术是基于先进传感器、计算机视觉、机器学习等技术的创新&#xff0c;旨在实现汽车在不需要人…...

TIGRE: a MATLAB-GPU toolbox for CBCT image reconstruction

TIGRE: 用于CBCT图像重建的MATLAB-GPU工具箱 论文链接&#xff1a;https://iopscience.iop.org/article/10.1088/2057-1976/2/5/055010 项目链接&#xff1a;https://github.com/CERN/TIGRE Abstract 本文介绍了基于层析迭代GPU的重建(TIGRE)工具箱&#xff0c;这是一个用于…...

我的NPI项目之Android 安全系列 -- EMVCo

最近一直在和支付有关的内容纠缠&#xff0c;原来我负责的产品后面还要过EMVCo的认证。于是&#xff0c;就网上到处找找啥事EMVCo&#xff0c;啥是EMVCo&#xff0c;啥是EMVCo。 于是找到了一个神奇的个人网站&#xff1a;Ganeshji Marwaha 虽然时间有点久远&#xff0c;但是用…...

vue中实现使用相框点击拍照,canvas进行前端图片合并下载

拍照和相框合成,下载图片dome 一、canvas介绍 Canvas是一个HTML5元素,它提供了一个用于在网页上绘制图形、图像和动画的2D渲染上下文。Canvas可以用于创建各种图形,如线条、矩形、圆形、文本等,并且可以通过JavaScript进行编程操作。 Canvas元素本身是一个矩形框,可以通…...

边缘检测@获取labelme标注的json黑白图掩码mask

import cv2 as cv import numpy as np import json import os from PIL import Imagedef convertPolygonToMask(jsonfilePath):...

嵌入式培训-数据结构-day23-线性表

线性表 线性表是包含若干数据元素的一个线性序列 记为&#xff1a; L(a0, ...... ai-1, ai, ai1 ...... an-1) L为表名&#xff0c;ai (0≤i≤n-1)为数据元素&#xff1b; n为表长,n>0 时&#xff0c;线性表L为非空表&#xff0c;否则为空表。 线性表L可用二元组形式描述…...

C# DotNetCore AOP简单实现

背景 实际开发中业务和日志尽量不要相互干扰嵌套&#xff0c;否则很难维护和调试。 示例 using System.Reflection;namespace CSharpLearn {internal class Program{static void Main(){int age 25;string name "bingling";Person person new(age, name);Conso…...

19.Tomcat搭建

Tomcat 简介 Tomcat的安装和启动 前置条件 • JDK 已安装(JAVA_HOME环境变量已被成功配置) Windows 下安装 访问 http://tomcat.apache.org ⇒ 左侧边栏 “Download” 2. 解压缩下载的文件到 “D:\tomcat”, tomcat的内容最终被解压到 “D:\tomcat\apache-tomcat-9.0.84” 3.…...

HarmonyOS云开发基础认证考试满分答案(100分)【全网最全-不断更新】【鸿蒙专栏-29】

系列文章&#xff1a; HarmonyOS应用开发者基础认证满分答案&#xff08;100分&#xff09; HarmonyOS应用开发者基础认证【闯关习题 满分答案】 HarmonyOS应用开发者高级认证满分答案&#xff08;100分&#xff09; HarmonyOS云开发基础认证满分答案&#xff08;100分&#xf…...

Unity项目里Log系统该怎么设计

其实并没有想完整就设计一个好用的Log系统&#xff0c;然后发出来。记录这个的原因&#xff0c;是在书里看到这么一句话&#xff0c;Log会消耗资源&#xff0c;特别是写文件&#xff0c;因此可以设置一个Log缓冲区&#xff0c;等缓冲区满了再一次性写入文件&#xff0c;以节省资…...

设计模式-状态(State)模式

目录 开发过程中的一些场景 状态模式的简单介绍 状态模式UML类图 类图讲解 适用场景 Java中的例子 案例讲解 什么是状态机 如何实现状态机 SpringBoot状态自动机 优点 缺点 与其他模式的区别 小结 开发过程中的一些场景 我们在平时的开发过程中&#xff0c;经常会…...

oracle怎么存放json好

Oracle数据库提供了多种方式来存储JSON数据。你可以将JSON数据存储在VARCHAR2、CLOB或BLOB数据类型中&#xff0c;或者使用Oracle提供的JSON数据类型。 如果你选择使用VARCHAR2数据类型来存储JSON数据&#xff0c;你可以直接将JSON字符串存储在其中。例如&#xff1a; CREATE…...

【计算机网络】—— 详解码元,传输速率的计算|网络奇缘系列|计算机网络

&#x1f308;个人主页: Aileen_0v0&#x1f525;系列专栏: 一见倾心,再见倾城 --- 计算机网络~&#x1f4ab;个人格言:"没有罗马,那就自己创造罗马~" 目录 码元 速率和波特 思考1 思考2 思考3 带宽&#xff08;Bandwidth&#xff09; &#x1f4dd;总结 码元…...

[ 云计算 | Azure 实践 ] 在 Azure 门户中创建 VM 虚拟机并进行验证

文章目录 一、前言二、在 Azure Portal 中创建 VM三、验证已创建的虚拟机资源3.1 方法一&#xff1a;在虚拟机服务中查看验证3.1 方法二&#xff1a;在资源组服务中查看验证 四、文末总结 一、前言 本文会开始创建新系列的专栏&#xff0c;专门更新 Azure 云实践相关的文章。 …...

计算机网络:网络层(无分类编址CIDR、计算题讲解)

带你快速通关期末 文章目录 前言一、无分类编址CIDR简介二、构成超网三、最长前缀匹配总结 前言 我们在前面知道了分类地址&#xff0c;但是分类地址又有很多缺陷&#xff1a; B类地址很快将分配完毕!路由表中的项目急剧增长! 一、无分类编址CIDR简介 无分类域间路由选择CI…...

Learning Semantic-Aware Knowledge Guidance forLow-Light Image Enhancement

微光图像增强&#xff08;LLIE&#xff09;研究如何提高照明并生成正常光图像。现有的大多数方法都是通过全局和统一的方式来改善低光图像&#xff0c;而不考虑不同区域的语义信息。如果没有语义先验&#xff0c;网络可能很容易偏离区域的原始颜色。为了解决这个问题&#xff0…...

关于嵌入式开发的一些信息汇总:开发模型以及自托管开发(二)

关于嵌入式开发的一些信息汇总&#xff1a;开发模型及自托管开发&#xff08;二&#xff09; 2 自托管开发2.2 构建 Raspberry Pi 内核2.3 安装内核2.4 总结 3 连接目标板3.1 Raspberry Pi 上的网络设置3.2 Ssh、rsh、rlogin 和 telnet 连接到目标 4 应用程序开发4.1 在目标板上…...

深度学习在微纳光子学中的应用

深度学习在微纳光子学中的主要应用方向 深度学习与微纳光子学的结合主要集中在以下几个方向&#xff1a; 逆向设计 通过神经网络快速预测微纳结构的光学响应&#xff0c;替代传统耗时的数值模拟方法。例如设计超表面、光子晶体等结构。 特征提取与优化 从复杂的光学数据中自…...

日语学习-日语知识点小记-构建基础-JLPT-N4阶段(33):にする

日语学习-日语知识点小记-构建基础-JLPT-N4阶段(33):にする 1、前言(1)情况说明(2)工程师的信仰2、知识点(1) にする1,接续:名词+にする2,接续:疑问词+にする3,(A)は(B)にする。(2)復習:(1)复习句子(2)ために & ように(3)そう(4)にする3、…...

安宝特方案丨XRSOP人员作业标准化管理平台:AR智慧点检验收套件

在选煤厂、化工厂、钢铁厂等过程生产型企业&#xff0c;其生产设备的运行效率和非计划停机对工业制造效益有较大影响。 随着企业自动化和智能化建设的推进&#xff0c;需提前预防假检、错检、漏检&#xff0c;推动智慧生产运维系统数据的流动和现场赋能应用。同时&#xff0c;…...

uni-app学习笔记二十二---使用vite.config.js全局导入常用依赖

在前面的练习中&#xff0c;每个页面需要使用ref&#xff0c;onShow等生命周期钩子函数时都需要像下面这样导入 import {onMounted, ref} from "vue" 如果不想每个页面都导入&#xff0c;需要使用node.js命令npm安装unplugin-auto-import npm install unplugin-au…...

CMake 从 GitHub 下载第三方库并使用

有时我们希望直接使用 GitHub 上的开源库,而不想手动下载、编译和安装。 可以利用 CMake 提供的 FetchContent 模块来实现自动下载、构建和链接第三方库。 FetchContent 命令官方文档✅ 示例代码 我们将以 fmt 这个流行的格式化库为例,演示如何: 使用 FetchContent 从 GitH…...

UR 协作机器人「三剑客」:精密轻量担当(UR7e)、全能协作主力(UR12e)、重型任务专家(UR15)

UR协作机器人正以其卓越性能在现代制造业自动化中扮演重要角色。UR7e、UR12e和UR15通过创新技术和精准设计满足了不同行业的多样化需求。其中&#xff0c;UR15以其速度、精度及人工智能准备能力成为自动化领域的重要突破。UR7e和UR12e则在负载规格和市场定位上不断优化&#xf…...

Mobile ALOHA全身模仿学习

一、题目 Mobile ALOHA&#xff1a;通过低成本全身远程操作学习双手移动操作 传统模仿学习&#xff08;Imitation Learning&#xff09;缺点&#xff1a;聚焦与桌面操作&#xff0c;缺乏通用任务所需的移动性和灵活性 本论文优点&#xff1a;&#xff08;1&#xff09;在ALOHA…...

【生成模型】视频生成论文调研

工作清单 上游应用方向&#xff1a;控制、速度、时长、高动态、多主体驱动 类型工作基础模型WAN / WAN-VACE / HunyuanVideo控制条件轨迹控制ATI~镜头控制ReCamMaster~多主体驱动Phantom~音频驱动Let Them Talk: Audio-Driven Multi-Person Conversational Video Generation速…...

佰力博科技与您探讨热释电测量的几种方法

热释电的测量主要涉及热释电系数的测定&#xff0c;这是表征热释电材料性能的重要参数。热释电系数的测量方法主要包括静态法、动态法和积分电荷法。其中&#xff0c;积分电荷法最为常用&#xff0c;其原理是通过测量在电容器上积累的热释电电荷&#xff0c;从而确定热释电系数…...

elementUI点击浏览table所选行数据查看文档

项目场景&#xff1a; table按照要求特定的数据变成按钮可以点击 解决方案&#xff1a; <el-table-columnprop"mlname"label"名称"align"center"width"180"><template slot-scope"scope"><el-buttonv-if&qu…...