文章解读与仿真程序复现思路——电力系统自动化EI\CSCD\北大核心《市场环境下考虑全周期经济效益的工业园区共享储能优化配置》
这个标题涉及到工业园区中共享储能系统的优化配置,考虑了市场环境和全周期经济效益。以下是对标题中各个要素的解读:
-
市场环境下: 指的是工业园区所处的商业和经济背景。这可能包括市场竞争状况、电力市场价格波动、政策法规等因素。在这一环境下,储能系统的配置需要灵活应对市场变化。
-
考虑全周期经济效益: 强调了在储能系统配置中,不仅仅关注短期内的经济效益,还要考虑整个使用寿命周期内的效益。这可能包括投资回收期、总成本、运营效率等方面的因素。
-
工业园区: 指的是一个集中了多个工业企业的区域。在这种环境下,能源需求通常较大,因此储能系统的优化配置对于提高能源利用效率、降低成本具有重要意义。
-
共享储能: 意味着多个工业企业可以共同使用同一储能系统。这种共享模式可能带来更高的灵活性和更好的经济效益。
-
优化配置: 指的是通过合理的设计和设置,使储能系统在各种条件下能够达到最佳性能。这可能涉及到技术参数的优化、充放电策略的制定等方面。
综合而言,这个标题表明研究的焦点是在市场环境中,通过考虑储能系统的全寿命周期,对工业园区内的共享储能进行优化配置,以实现最佳的经济效益。这种研究有望为工业园区提供更可持续、经济高效的能源解决方案。
摘要:为提升用户侧储能运行效率、改善投资成效,提出一种在市场环境下考虑全周期经济效益的工业园区共享储能(SES)优化配置方法。一方面,通过协调不同用户间的差异化调节需求,减少储能容量要求;另一方面,通过整合用户与SES的灵活调节能力,参与需求响应市场拓宽盈利渠道,并且考虑了SES全运行周期经济效益测算以降低投资风险。首先,结合电力市场交易规则,提出了多工业用户组建合作联盟的园区共享储能运营模式。其次,以运营周期内联盟总成本最小为目标,建立SES双层优化配置模型,其中,上层模型旨在形成最大化投资成效的共享储能规划方案,而下层模型则综合考虑分时电价、需求响应违约风险等因素形成储能的最优投标调度方式,并结合市场时序演变规律精准量化共享储能在全运行周期内的运营收益,对上层结果进行修正。接着,利用近似KKT(Karush-Kuhn-Tucker)条件将该模型转化为单层模型进行求解,结合雨流计数法与迭代法量化SES容量衰减对其配置方案的影响,并利用双边Shapley值法分摊各工业用户的投资成本。最后,算例仿真验证了所提方法的有效性并且分析了储能盈利模式、SES容量衰减以及DR违约风险等因素对SES投资经济效益的影响。
这段摘要描述了一种针对工业园区中用户侧储能系统(SES)的优化配置方法,其目标是提高运行效率并改善投资成效。以下是对摘要的详细解读:
-
目标与背景: 研究的目标是提升用户侧储能运行效率和改善投资成效。这是出于对全球能源问题的关注,尤其是在市场环境中,更为重要。提到的市场环境可能包括市场价格波动、政策法规等。
-
方法概述: 方法主要包括两个方面的考虑。首先,通过协调不同用户的需求,减少储能容量的需求。其次,通过整合用户和储能系统的调节能力,参与需求响应市场,扩大盈利渠道。这两方面的考虑都与提高储能系统在市场中的经济效益有关。
-
运营模式: 提出了一种新的运营模式,即多个工业用户组成合作联盟,共享储能系统。这可以提高系统的整体效率,并通过联盟形式参与市场活动。
-
优化配置模型: 建立了双层的SES优化配置模型。上层模型旨在形成最大化投资成效的共享储能规划方案,而下层模型考虑了多种因素,包括分时电价、需求响应违约风险等,形成储能的最优投标调度方式。
-
数学建模与求解: 使用了近似KKT条件将模型转化为单层模型进行求解。此外,采用雨流计数法和迭代法量化SES容量衰减对配置方案的影响,以及利用双边Shapley值法分摊各工业用户的投资成本。
-
仿真验证和分析: 通过算例仿真验证了方法的有效性,并对储能盈利模式、SES容量衰减以及DR(需求响应)违约风险等因素对SES投资经济效益的影响进行了分析。
总体而言,这个研究提出了一种复杂而全面的SES优化配置方法,该方法不仅考虑了经济效益,还关注了市场因素和全周期的经济效益。
关键词:市场时序演变; 工业园区;共享储能;需求响应市场;优化配置;双层模型;
-
市场时序演变: 这指的是市场在时间上的演变和变化。在这个上下文中,可能涉及到电力市场的价格波动、不同时段的用电需求变化等因素。考虑市场时序演变意味着方法不仅仅关注静态条件下的优化,还考虑了市场在不同时间点的动态变化。
-
工业园区: 指的是一个集中了多个工业企业的区域。在这个研究中,工业园区可能是一个重要的背景,因为共享储能系统很可能服务于该园区内的多个工业用户。
-
共享储能: 表示多个用户或企业共同使用一套储能系统。这种共享可以带来更高的效益和资源利用率。
-
需求响应市场: 指的是一种市场机制,其中用户根据市场价格或其他激励措施调整其用电行为,以响应系统需求或优化自身成本。在这里,共享储能系统可能通过参与需求响应市场来提高盈利。
-
优化配置: 意味着通过调整储能系统的参数、容量等来最大化投资效益。在这个上下文中,可能包括考虑不同用户需求、市场条件等因素,以找到最优的储能配置方案。
-
双层模型: 提到建立了双层的SES优化配置模型。这种模型结构一般包括上层和下层,上层目标是形成最大化投资效益的共享储能规划方案,而下层模型则综合考虑多种因素,如电价、需求响应违约风险等,形成储能的最优投标调度方式。这种层次结构可以更好地捕捉不同层面的决策和优化过程。
仿真算例:为验证所提方法的有效性,本文基于中国浙江 某工业园区内 4 个中小型工业用户的真实负荷数据 进行仿真实验,各用户的最大用电负荷在 1 MW 左 右且装有少量屋顶光伏。算例中所涉及的原始数据 及分时电价、DR 补贴价格等关键参数见附录 F,其 中部分储能相关参数参考文献[8]。为对所提方法进行全面分析,本文共设计了以 下 6 个算例。首先,通过对比算例 1~4 的结果,对不 同盈利模式下的储能经济效益进行分析。然后,通 过对比算例 4 和 5 的结果,分析 SES 容量衰减对其 经济效益的影响并以此说明在 SES 优化配置问题 中考虑其容量衰减特性的必要性。最后,通过对比 算例 4 和 6 的结果,分析 DR 违约风险对约定响应量 制定策略以及 SES 经济效益的影响,并以此说明在 本文所提模式中考虑 DR 违约风险的必要性。 算例 1:用户不配置储能,不参与 DR 市场。 算例 2:用户单独配置储能但不参与 DR 市场。 算例 3:用户共同投资 SES 但不参与 DR 市场。 算例 4:用户共同投资 SES 且联合参与 DR 市场,即本文所提出的模式。 算例 5:用户共同投资 SES 且联合参与 DR 市 场,但不考虑 SES 的容量衰减,SES 配置容量与算 例 4 相同。 算例 6:用户共同投资 SES 且联合参与 DR 市 场,但不考虑 DR 违约风险,SES 配置容量与算例 4 相同。
仿真程序复现思路:
复现上述仿真实验可以分为以下几个步骤,我将以Python为例进行简要的伪代码表示。请注意,实际的实现可能需要使用专业的仿真工具和库,而这里的伪代码仅用于概念性的描述。
- 设计算例:
- 设计六个不同的算例,按照描述中的用户配置和市场参与情况进行设置。
- 执行仿真:
- 使用所设计的算例,执行仿真实验,计算每个算例的经济效益。
- 考虑不同的盈利模式、SES容量衰减、DR违约风险等因素。
- 分析和比较结果:
- 对仿真结果进行分析,比较不同算例下的储能经济效益。
- 关注 SES 容量衰减和 DR 违约风险对经济效益的影响。
- 结论和可视化:
- 根据分析结果得出结论,可视化展示不同算例的经济效益变化趋势。


import numpy as np
import pandas as pd
import matplotlib.pyplot as plt# 步骤1:准备数据
def load_from_appendix(file_path):# 实际情况下,你可能需要使用Pandas等库来加载数据return pd.read_csv(file_path)def load_from_reference(file_path):# 加载储能相关参数return pd.read_csv(file_path)load_data = load_from_appendix("user_load_data.csv")
electricity_price = load_from_appendix("electricity_price.csv")
dr_subsidy_price = load_from_appendix("dr_subsidy_price.csv")
storage_parameters = load_from_reference("storage_parameters.csv")# 步骤2:设计算例
cases = [{"storage_config": None, "dr_participation": False},{"storage_config": {"type": "individual"}, "dr_participation": False},# ... 添加其它算例
]# 步骤3:执行仿真
def run_simulation(load_data, electricity_price, dr_subsidy_price, storage_parameters, case):# 实际情况下,这里应该有一个复杂的模型来进行仿真# 此处只是一个简单的示例total_cost = np.sum(load_data * electricity_price)if case["storage_config"]:# 如果配置了储能,可能会有不同的计算方式total_cost -= calculate_storage_cost(load_data, storage_parameters)if case["dr_participation"]:total_cost -= calculate_dr_revenue(load_data, dr_subsidy_price)return total_costdef calculate_storage_cost(load_data, storage_parameters):# 根据储能参数和用户负荷数据计算储能成本return 0 # 简化示例,实际应该有更复杂的计算def calculate_dr_revenue(load_data, dr_subsidy_price):# 根据用户负荷数据和DR补贴价格计算DR收入return 0 # 简化示例,实际应该有更复杂的计算results = {}
for case in cases:result = run_simulation(load_data, electricity_price, dr_subsidy_price, storage_parameters, case)results[str(case)] = result# 步骤4:分析和比较结果
def analyze_and_compare(results):# 分析结果,可能涉及到统计分析、图表绘制等for case, result in results.items():print(f"{case}: {result}")# 步骤5:结论和可视化
def draw_conclusions_and_visualize(results):# 画图等可视化操作labels, values = zip(*results.items())plt.bar(labels, values)plt.xlabel('Cases')plt.ylabel('Total Cost')plt.title('Simulation Results')plt.show()analyze_and_compare(results)
draw_conclusions_and_visualize(results)
请注意,上述代码是伪代码,实际的仿真实验可能涉及更多细节和专业工具。在实际实现中,你可能需要使用数据科学和仿真相关的Python库,例如NumPy、Pandas、Matplotlib等,以及可能的仿真工具或库,具体取决于你的具体需求和研究领域。
相关文章:
文章解读与仿真程序复现思路——电力系统自动化EI\CSCD\北大核心《市场环境下考虑全周期经济效益的工业园区共享储能优化配置》
这个标题涉及到工业园区中共享储能系统的优化配置,考虑了市场环境和全周期经济效益。以下是对标题中各个要素的解读: 市场环境下: 指的是工业园区所处的商业和经济背景。这可能包括市场竞争状况、电力市场价格波动、政策法规等因素。在这一环…...
WPF——命令commond的实现方法
命令commond的实现方法 属性通知的方式 鼠标监听绑定事件 行为:可以传递界面控件的参数 第一种: 第二种: 附加属性 propa:附加属性快捷方式...
信息收集 - 域名
1、Whois查询: Whois 是一个用来查询域名是否已经被注册以及相关详细信息的数据库(如:域名所有人、域名注册商、域名注册日期和过期日期等)。通过访问 Whois 服务器,你可以查询域名的归属者联系方式和注册时间。 你可以在 域名Whois查询 - 站长之家 上进行在线查询。 2、…...
基于YOLOv8深度学习的路面标志线检测与识别系统【python源码+Pyqt5界面+数据集+训练代码】目标检测、深度学习实战
《博主简介》 小伙伴们好,我是阿旭。专注于人工智能、AIGC、python、计算机视觉相关分享研究。 ✌更多学习资源,可关注公-仲-hao:【阿旭算法与机器学习】,共同学习交流~ 👍感谢小伙伴们点赞、关注! 《------往期经典推…...
leetCode算法—1.两数之和
难度:* 给定一个整数数组 nums 和一个整数目标值 target,请你在该数组中找出 和为目标值 target 的那 两个 整数,并返回它们的数组下标。 你可以假设每种输入只会对应一个答案。但是,数组中同一个元素在答案里不能重复出现。 你…...
oracle 设置访问白名单
有相关安全策略会要求部分 ip 禁止访问oracle数据库,那么如何实现对IP的白名单设置呢?又如何细分到对用户的限制访问呢?本文将介绍方法给大伙。 1、禁止IP访问数据库(修改sqlnet.ora方式实现) vi $ORACLE_HOME/network…...
Flink系列之:窗口关联
Flink系列之:窗口关联 一、窗口关联二、INNER/LEFT/RIGHT/FULL OUTER三、SEMI四、ANTI五、限制 一、窗口关联 适用于流、批窗口关联就是增加时间维度到关联条件中。在此过程中,窗口关联将两个流中在同一窗口且符合 join 条件的元素 join 起来。窗口关联…...
Eolink 两项产品入选 2023 年广东省名优高新技术产品名录!
近日,2023 年广东省名优高新技术产品正式名单已经发布,Eolink 旗下两项产品荣幸入选! “广东省名优高新技术产品”是广东省对高新技术产品领域的升级和优化的重要措施。名优产品的评选不仅强调了技术的先进性,更对产品的质量、市…...
054:vue工具 --- BASE64加密解密互相转换
第054个 查看专栏目录: VUE ------ element UI 专栏目标 在vue和element UI联合技术栈的操控下,本专栏提供行之有效的源代码示例和信息点介绍,做到灵活运用。 (1)提供vue2的一些基本操作:安装、引用,模板使…...
自动驾驶学习笔记(二十)——Planning算法
#Apollo开发者# 学习课程的传送门如下,当您也准备学习自动驾驶时,可以和我一同前往: 《自动驾驶新人之旅》免费课程—> 传送门 《Apollo 社区开发者圆桌会》免费报名—>传送门 文章目录 前言 参考线平滑 双层状态机 EM Planner …...
adb的使用
Adb windows 环境搭建 (1)将adb包安装或者解压到一个路径,并拿到adb.exe所在的路径值,例如,D:\Tools\adb (2)将路径值放进windows环境变量 我的电脑(此电脑图标)右键–》 选择“属…...
会旋转的树,你见过吗?
🎈个人主页:🎈 :✨✨✨初阶牛✨✨✨ 🐻强烈推荐优质专栏: 🍔🍟🌯C的世界(持续更新中) 🐻推荐专栏1: 🍔🍟🌯C语言初阶 🐻推荐专栏2: 🍔…...
Azure Machine Learning - 提示工程简介
OpenAI的GPT-3、GPT-3.5和GPT-4模型基于用户输入的文本提示工作。有效的提示构造是使用这些模型的关键技能,涉及到配置模型权重以执行特定任务。这不仅是技术操作,更像是一种艺术,需要经验和直觉。本文旨在介绍适用于所有GPT模型的提示概念和…...
服务器的安全包括哪些方面?服务器安全该如何去加固处理?
服务器安全包括如下几个方面: 系统安全:包括操作系统的安全性、系统的漏洞和补丁管理、用户管理、文件权限和访问控制等。 网络安全:包括网络拓扑结构、网络设备的安全性、网络协议的安全性、防火墙和入侵检测等。 数据安全:包括数…...
为什么在Android中需要Context?
介绍 在Android开发中,Context是一个非常重要的概念,但是很多开发者可能并不清楚它的真正含义以及为什么需要使用它。本文将详细介绍Context的概念,并解释为什么在Android应用中需要使用它。 Context的来源 Context的概念来源于Android框架…...
AIGC实战——条件生成对抗网络(Conditional Generative Adversarial Net, CGAN)
AIGC实战——条件生成对抗网络 0. 前言1. CGAN架构2. 模型训练3. CGAN 分析小结系列链接 0. 前言 我们已经学习了如何构建生成对抗网络 (Generative Adversarial Net, GAN) 以从给定的训练集中生成逼真图像。但是,我们无法控制想要生成的图像类型,例如控…...
高性能计算HPC与统一存储
高性能计算(HPC)广泛应用于处理大量数据的复杂计算,提供更精确高效的计算结果,在石油勘探、基因分析、气象预测等领域,是企业科研机构进行研发的有效手段。为了分析复杂和大量的数据,存储方案需要响应更快&…...
秋招上岸记录咕咕咕了。
思考了一下,感觉并没有单独写这样一篇博客的必要。 能够写出来的,一些可能会对人有帮助的东西都做进了视频里面,未来会在blbl发布,目前剪辑正在施工中(?) 另外就是,那个视频里面使…...
vue模板语法
一、插值 1、文本 (1)v-text语法 缩写: {{…}}(双大括号)的文本插值 方法一: <template><h1> hello </h1><p v-text"data.name"></p><!-- v-text的简写--&…...
Pytorch神经网络的模型架构(nn.Module和nn.Sequential的用法)
一、层和块 在构造自定义块之前,我们先回顾一下多层感知机的代码。下面的代码生成一个网络,其中包含一个具有256个单元和ReLU激活函数的全连接隐藏层,然后是一个具有10个隐藏单元且不带激活函数的全连接输出层。 import torch from torch im…...
OpenLayers 可视化之热力图
注:当前使用的是 ol 5.3.0 版本,天地图使用的key请到天地图官网申请,并替换为自己的key 热力图(Heatmap)又叫热点图,是一种通过特殊高亮显示事物密度分布、变化趋势的数据可视化技术。采用颜色的深浅来显示…...
python/java环境配置
环境变量放一起 python: 1.首先下载Python Python下载地址:Download Python | Python.org downloads ---windows -- 64 2.安装Python 下面两个,然后自定义,全选 可以把前4个选上 3.环境配置 1)搜高级系统设置 2…...
YSYX学习记录(八)
C语言,练习0: 先创建一个文件夹,我用的是物理机: 安装build-essential 练习1: 我注释掉了 #include <stdio.h> 出现下面错误 在你的文本编辑器中打开ex1文件,随机修改或删除一部分,之后…...
最新SpringBoot+SpringCloud+Nacos微服务框架分享
文章目录 前言一、服务规划二、架构核心1.cloud的pom2.gateway的异常handler3.gateway的filter4、admin的pom5、admin的登录核心 三、code-helper分享总结 前言 最近有个活蛮赶的,根据Excel列的需求预估的工时直接打骨折,不要问我为什么,主要…...
工业自动化时代的精准装配革新:迁移科技3D视觉系统如何重塑机器人定位装配
AI3D视觉的工业赋能者 迁移科技成立于2017年,作为行业领先的3D工业相机及视觉系统供应商,累计完成数亿元融资。其核心技术覆盖硬件设计、算法优化及软件集成,通过稳定、易用、高回报的AI3D视觉系统,为汽车、新能源、金属制造等行…...
数据库分批入库
今天在工作中,遇到一个问题,就是分批查询的时候,由于批次过大导致出现了一些问题,一下是问题描述和解决方案: 示例: // 假设已有数据列表 dataList 和 PreparedStatement pstmt int batchSize 1000; // …...
【碎碎念】宝可梦 Mesh GO : 基于MESH网络的口袋妖怪 宝可梦GO游戏自组网系统
目录 游戏说明《宝可梦 Mesh GO》 —— 局域宝可梦探索Pokmon GO 类游戏核心理念应用场景Mesh 特性 宝可梦玩法融合设计游戏构想要素1. 地图探索(基于物理空间 广播范围)2. 野生宝可梦生成与广播3. 对战系统4. 道具与通信5. 延伸玩法 安全性设计 技术选…...
Java多线程实现之Thread类深度解析
Java多线程实现之Thread类深度解析 一、多线程基础概念1.1 什么是线程1.2 多线程的优势1.3 Java多线程模型 二、Thread类的基本结构与构造函数2.1 Thread类的继承关系2.2 构造函数 三、创建和启动线程3.1 继承Thread类创建线程3.2 实现Runnable接口创建线程 四、Thread类的核心…...
代理篇12|深入理解 Vite中的Proxy接口代理配置
在前端开发中,常常会遇到 跨域请求接口 的情况。为了解决这个问题,Vite 和 Webpack 都提供了 proxy 代理功能,用于将本地开发请求转发到后端服务器。 什么是代理(proxy)? 代理是在开发过程中,前端项目通过开发服务器,将指定的请求“转发”到真实的后端服务器,从而绕…...
学校时钟系统,标准考场时钟系统,AI亮相2025高考,赛思时钟系统为教育公平筑起“精准防线”
2025年#高考 将在近日拉开帷幕,#AI 监考一度冲上热搜。当AI深度融入高考,#时间同步 不再是辅助功能,而是决定AI监考系统成败的“生命线”。 AI亮相2025高考,40种异常行为0.5秒精准识别 2025年高考即将拉开帷幕,江西、…...
