当前位置: 首页 > news >正文

【性能测试】基础知识篇-压力模型

常见压力模式

并发模式(即虚拟用户模式)和RPS模式(即Requests Per Second,每秒请求数,吞吐量模式)。

本文介绍这两种压力模式的区别,以便根据自身业务场景选择更合适的压力模式。

并发模式

“并发”是指虚拟并发用户数,从业务角度,也可以理解为同时在线的用户数。

应用场景

如果需要从客户端的角度出发,摸底业务系统各节点能同时承载的在线用户数,可以使用该模式设置目标并发。

使用说明

并发模式下,需要指定全场景的最大并发数,再设置各串联链路的并发权重。

串联链路内各API的响应速度不同(表现为响应时间不同),所以单位时间内API的并发数也会不同。API响应速度越快,单位时间内累积在API上的并发用户数越少。

假设,目前共有100个虚拟用户需要操作某个事务(即串联链路)。该串联链路中共有2个API,API 1的响应速度快而API 2响应速度慢。则更多的虚拟用户将会等待在API 2上,API 2则需要更多的线程资源来处理更多的虚拟用户请求。

RPS模式

RPS(Requests Per Second)是指每秒请求数。

应用场景

RPS模式即吞吐量模式,通过设置每秒发出的请求数,从服务端的角度出发,直接衡量系统的吞吐能力,免去从并发到RPS的繁琐转化,可快速实现压测。

使用说明

API接口(如电商加购物车、下单等)主要用TPS(Transaction Per Second, 每秒事务数)来衡量系统的吞吐能力,选择该模式可以直接按照预期的TPS设置RPS。如果希望检验“下单”接口是否能达到500 TPS的预期,那么设置RPS为500,每秒发送500个请求,可检验系统的吞吐能力。

该模式下,请求无法及时响应时可能会导致较高的并发,异常情况请及时停止。

该模式仅支持非自动递增进行压测,即您需在压测过程中手工调速。具体操作,请参见手动调速模式下调速。

同一链路中,后一个API的RPS值需小于等于前一个API的RPS值。

基于实际业务考虑,一般正常业务链路转化模型应该为漏斗形状。例如,正常业务链路为:查看首页-查看商品详情-加入购物车-下单-付款。那么通常情况下,查看首页的用户数会比查看商品详情的用户数多,查看商品详情的用户数也会比加入购物车的用户数多,以此类推,所以后一个API的RPS值需小于前一个API的值,这样就比较符合漏斗模型。

配置量级及数据

设置好压测模式后,还需要在施压配置页面设置压测起始量级与最大量级。

压测数值

每个API可以视为业务系统的一个节点,处理能力不同导致可承载的业务量也不一致。并发模式与RPS模式施压的方式不同,故压测数值上的设置也会不同。

说明 无论选取何种压测模式,各场景最大值的总和不可超过该账户下对应资源包的最大VU、RPS。

两种模型的区别

RPS(Requests Per Second)压力模型和并发用户模型都是性能测试中常用的模型,但它们的测试方法和指标略有不同。

并发用户模型是一种测试方法,它通过模拟多个并发用户同时访问系统,以测试系统在高并发情况下的性能表现。测试人员可以逐步增加并发用户数,直到达到系统的瓶颈为止。在并发用户模型中,主要关注的指标是并发用户数、响应时间、吞吐量、错误率等。

RPS压力模型也是一种测试方法,它通过模拟多个并发用户向系统发送请求,以测试系统在高并发情况下的性能表现。测试人员可以逐步增加请求量,直到达到系统的瓶颈为止。在RPS压力模型中,主要关注的指标是每秒钟处理的请求数(即RPS)、响应时间、吞吐量、错误率等。

因此,两种模型的区别在于,对于同样的并发用户数,RPS模型可能会产生更多的请求量,而并发用户模型则更强调每个用户并发请求的情况。此外,两种模型对于测试系统性能的关注点也略有不同,但都是测试系统在高并发情况下的性能表现,以便找到系统瓶颈并进行优化。

最后感谢每一个认真阅读我文章的人,礼尚往来总是要有的,虽然不是什么很值钱的东西,如果你用得到的话可以直接拿走:

这些资料,对于【软件测试】的朋友来说应该是最全面最完整的备战仓库,这个仓库也陪伴上万个测试工程师们走过最艰难的路程,希望也能帮助到你!

相关文章:

【性能测试】基础知识篇-压力模型

常见压力模式 并发模式(即虚拟用户模式)和RPS模式(即Requests Per Second,每秒请求数,吞吐量模式)。 本文介绍这两种压力模式的区别,以便根据自身业务场景选择更合适的压力模式。 并发模式 …...

springboot-redis设置定时触发任务详解

最近研究了一下“redis定时触发”,网上查了查资料,这里记录一下。 从Redis 2.8.0开始,Redis加入了发布/订阅模式以及键空间消息提醒(keyspace notification)功能。键空间消息提醒提供了允许客户端通过订阅指定信道获取…...

Video anomaly detection with spatio-temporal dissociation 论文阅读

Video anomaly detection with spatio-temporal dissociation 摘要1.介绍2.相关工作3. Methods3.1. Overview3.2. Spatial autoencoder3.3. Motion autoencoder3.4. Variance attention module3.5. Clustering3.6. The training objective function 4. Experiments5. Conclusio…...

svn 安装

安装系统 ubuntu 22 安装命令: sudo apt-get install subversion 创建第一个工程: 创建版本库、项目 1、先创建svn根目录文件夹 sudo mkdir /home/svn 2、创建项目的目录文件夹 sudo mkdir /home/svn/demo_0 svnadmin create /home/svn/demo_0 配置&a…...

slurm 23.11.0集群 debian 11.5 安装

slurm 23.11.0集群 debian 11.5 安装 用途 Slurm(Simple Linux Utility for Resource Management, http://slurm.schedmd.com/ )是开源的、具有容错性和高度可扩展的Linux集群超级计算系统资源管理和作业调度系统。超级计算系统可利用Slurm对资源和作业进行管理&a…...

ffmpeg可以做什么

用途 FFmpeg是一个功能强大的多媒体处理工具,可以处理音频和视频文件。它是一个开源项目,可在各种操作系统上运行,包括Linux、Windows和Mac OS X等。以下是FFmpeg可以做的一些主要任务: 转换媒体格式:可将一个媒体格式…...

一种缩小数据之间差距的算法

先上代码&#xff1a; /** * 缩小数据之间的差距&#xff0c;但是大小关系不变的方法* param {Array} features */function minMaxData(data) {for (let i 0; i < data.length; i) {const f data[i];const x f[1];const yf[2];//此处5根据实际情况设置const y2 Math.pow(…...

【Axure RP9】动态面板使用------案例:包括轮播图和多方式登入及左侧菜单栏案例

目录 一 动态面板简介 1.1 动态面板是什么 二 轮播图 2.1 轮播图是什么 2.2 轮播图应用场景 2.3 制作实播图 三 多方式登入 3.1多方式登入是什么 3.3 多方式登入实现 四 左侧菜单栏 4.1左侧菜单栏是什么 4.2 左侧菜单栏实现 一 动态面板简介 1.1 动态面板是什么…...

在接口实现类中,加不加@Override的区别

最近的软件构造实验经常需要设计接口&#xff0c;我们知道Override注解是告诉编译器&#xff0c;下面的方法是重写父类的方法&#xff0c;那么单纯实现接口的方法需不需要加Override呢&#xff1f; 定义一个类实现接口&#xff0c;使用idea时&#xff0c;声明implements之后会…...

优质全套SpringMVC教程

三、SpringMVC 在SSM整合中&#xff0c;MyBatis担任的角色是持久层框架&#xff0c;它能帮我们访问数据库&#xff0c;操作数据库 Spring能利用它的两大核心IOC、AOP整合框架 1、SpringMVC简介 1.1、什么是MVC MVC是一种软件架构的思想&#xff08;不是设计模式-思想就是我们…...

微信小程序---使用npm包安装Vant组件库

在小程序项目中&#xff0c;安装Vant 组件库主要分为如下3步: 注意&#xff1a;如果你的文件中不存在pakage.json&#xff0c;请初始化一下包管理器 npm init -y 1.通过 npm 安装(建议指定版本为1.3.3&#xff09; 通过npm npm i vant/weapp1.3.3 -S --production 通过y…...

GPT-4V被超越?SEED-Bench多模态大模型测评基准更新

&#x1f4d6; 技术报告 SEED-Bench-1&#xff1a;https://arxiv.org/abs/2307.16125 SEED-Bench-2&#xff1a;https://arxiv.org/abs/2311.17092 &#x1f917; 测评数据 SEED-Bench-1&#xff1a;https://huggingface.co/datasets/AILab-CVC/SEED-Bench SEED-Bench-2&…...

数据库_mongoDB

1 介绍 MongoDB 是一种 NoSQL 数据库&#xff0c;它将每个数据存储为一个文档&#xff0c;这里的文档类似于 JSON/BSON 对象&#xff0c;具体数据结构由键值&#xff08;key/value&#xff09;对组成。字段值可以包含其他文档&#xff0c;数组及文档数组。其数据结构非常松散&…...

Layui实现自定义的table列悬停事件并气泡提示信息

1、概要 使用layui组件实现table的指定列悬停时提示信息&#xff0c;因为layui组件中没有鼠标悬停事件支持&#xff0c;所以需要结合js原生事件来实现这个功能&#xff0c;并结合layui的tips和列的templte属性气泡提示实现效果。 2、效果图 3、代码案例 <!DOCTYPE html&g…...

Tomcat从认识安装到详细使用

文章目录 一.什么是Tomact?二.Tomcat的安装1.下载安装包2.一键下载3.打开Tomcat进行测试4.解决Tomcat中文服务器乱码 三.Tomcat基本使用1.启动与关闭Tomcat2.Tomcat部署项目与浏览器访问项目 四.Tomcat操作中的常见问题1.启动Tomcat后&#xff0c;启动窗口一闪而过&#xff1f…...

07-Eventing及实践

1 Knative Eventing的相关组件 Knative Eventing具有四个最基本的组件&#xff1a;Sources、Brokers、Triggers 和 Sinks 事件会从Source发送至SinkSink是能够接收传入的事件可寻址&#xff08;Addressable&#xff09;或可调用&#xff08;Callable&#xff09;资源 Knative S…...

Linux下Netty实现高性能UDP服务

前言 近期笔者基于Netty接收UDP报文进行业务数据统计的功能&#xff0c;因为Netty默认情况下处理UDP收包只能由一个线程负责&#xff0c;无法像TCP协议那种基于主从reactor模型实现多线程监听端口&#xff0c;所以笔者查阅网上资料查看是否有什么方式可以接收UDP收包的性能瓶颈…...

Ubuntu 22.04 Tesla V100s显卡驱动,CUDA,cuDNN,MiniCONDA3 环境的安装

今天来将由《蓝创精英团队》带来一个Ubuntu 显卡环境的安装&#xff0c;主要是想记录下来&#xff0c;方便以后快捷使用。 主要的基础环境 显卡驱动 (nvidia-smi)CUDA (nvidia-smi 可查看具体版本)cuDNN (cuda 深度学习加速库)Conda python环境管理(Miniconda3) Nvidia 驱动…...

FFmpeg转码流程和常见概念

视频格式&#xff1a;mkv&#xff0c;flv&#xff0c;mov&#xff0c;wmv&#xff0c;avi&#xff0c;mp4&#xff0c;m3u8&#xff0c;ts等等 FFmpeg的转码工具&#xff0c;它的处理流程是这样的&#xff1a; 从输入源获得原始的音视频数据&#xff0c;解封装得到压缩封装的音…...

【01】GeoScene生产海图或者电子航道图

1.1 什么是电子海图制图模块 GeoScene海事模块是一个用于管理和制作符合国际水文组织&#xff08;IHO&#xff09;S-100系列标准和S-57标准的海事数据的系统。提供了S-100和S-57工具&#xff0c;用于加载基于S-100的要素目录、创建基于S-57传输结构的数据、输入数据、符号化数…...

超短脉冲激光自聚焦效应

前言与目录 强激光引起自聚焦效应机理 超短脉冲激光在脆性材料内部加工时引起的自聚焦效应&#xff0c;这是一种非线性光学现象&#xff0c;主要涉及光学克尔效应和材料的非线性光学特性。 自聚焦效应可以产生局部的强光场&#xff0c;对材料产生非线性响应&#xff0c;可能…...

【解密LSTM、GRU如何解决传统RNN梯度消失问题】

解密LSTM与GRU&#xff1a;如何让RNN变得更聪明&#xff1f; 在深度学习的世界里&#xff0c;循环神经网络&#xff08;RNN&#xff09;以其卓越的序列数据处理能力广泛应用于自然语言处理、时间序列预测等领域。然而&#xff0c;传统RNN存在的一个严重问题——梯度消失&#…...

MMaDA: Multimodal Large Diffusion Language Models

CODE &#xff1a; https://github.com/Gen-Verse/MMaDA Abstract 我们介绍了一种新型的多模态扩散基础模型MMaDA&#xff0c;它被设计用于在文本推理、多模态理解和文本到图像生成等不同领域实现卓越的性能。该方法的特点是三个关键创新:(i) MMaDA采用统一的扩散架构&#xf…...

屋顶变身“发电站” ,中天合创屋面分布式光伏发电项目顺利并网!

5月28日&#xff0c;中天合创屋面分布式光伏发电项目顺利并网发电&#xff0c;该项目位于内蒙古自治区鄂尔多斯市乌审旗&#xff0c;项目利用中天合创聚乙烯、聚丙烯仓库屋面作为场地建设光伏电站&#xff0c;总装机容量为9.96MWp。 项目投运后&#xff0c;每年可节约标煤3670…...

MODBUS TCP转CANopen 技术赋能高效协同作业

在现代工业自动化领域&#xff0c;MODBUS TCP和CANopen两种通讯协议因其稳定性和高效性被广泛应用于各种设备和系统中。而随着科技的不断进步&#xff0c;这两种通讯协议也正在被逐步融合&#xff0c;形成了一种新型的通讯方式——开疆智能MODBUS TCP转CANopen网关KJ-TCPC-CANP…...

Module Federation 和 Native Federation 的比较

前言 Module Federation 是 Webpack 5 引入的微前端架构方案&#xff0c;允许不同独立构建的应用在运行时动态共享模块。 Native Federation 是 Angular 官方基于 Module Federation 理念实现的专为 Angular 优化的微前端方案。 概念解析 Module Federation (模块联邦) Modul…...

论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(一)

宇树机器人多姿态起立控制强化学习框架论文解析 论文解读&#xff1a;交大&港大&上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架&#xff08;一&#xff09; 论文解读&#xff1a;交大&港大&上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化…...

ABAP设计模式之---“简单设计原则(Simple Design)”

“Simple Design”&#xff08;简单设计&#xff09;是软件开发中的一个重要理念&#xff0c;倡导以最简单的方式实现软件功能&#xff0c;以确保代码清晰易懂、易维护&#xff0c;并在项目需求变化时能够快速适应。 其核心目标是避免复杂和过度设计&#xff0c;遵循“让事情保…...

2025季度云服务器排行榜

在全球云服务器市场&#xff0c;各厂商的排名和地位并非一成不变&#xff0c;而是由其独特的优势、战略布局和市场适应性共同决定的。以下是根据2025年市场趋势&#xff0c;对主要云服务器厂商在排行榜中占据重要位置的原因和优势进行深度分析&#xff1a; 一、全球“三巨头”…...

SpringAI实战:ChatModel智能对话全解

一、引言&#xff1a;Spring AI 与 Chat Model 的核心价值 &#x1f680; 在 Java 生态中集成大模型能力&#xff0c;Spring AI 提供了高效的解决方案 &#x1f916;。其中 Chat Model 作为核心交互组件&#xff0c;通过标准化接口简化了与大语言模型&#xff08;LLM&#xff0…...