当前位置: 首页 > news >正文

hive企业级调优策略之数据倾斜

测试所用到的数据参考:

原文链接:https://blog.csdn.net/m0_52606060/article/details/135080511
本教程的计算环境为Hive on MR。计算资源的调整主要包括Yarn和MR。

数据倾斜概述

数据倾斜问题,通常是指参与计算的数据分布不均,即某个key或者某些key的数据量远超其他key,导致在shuffle阶段,大量相同key的数据被发往同一个Reduce,进而导致该Reduce所需的时间远超其他Reduce,成为整个任务的瓶颈。

Hive中的数据倾斜常出现在分组聚合和join操作的场景中

分组聚合导致的数据倾斜

优化说明

前文提到过,Hive中未经优化的分组聚合,是通过一个MapReduce Job实现的。Map端负责读取数据,并按照分组字段分区,通过Shuffle,将数据发往Reduce端,各组数据在Reduce端完成最终的聚合运算。
如果group by分组字段的值分布不均,就可能导致大量相同的key进入同一Reduce,从而导致数据倾斜问题。

由分组聚合导致的数据倾斜问题,有以下两种解决思路:

(1)Map-Side聚合

开启Map-Side聚合后,数据会现在Map端完成部分聚合工作。这样一来即便原始数据是倾斜的,经过Map端的初步聚合后,发往Reduce的数据也就不再倾斜了。最佳状态下,Map-端聚合能完全屏蔽数据倾斜问题。
相关参数如下:
–启用map-side聚合

set hive.map.aggr=true;

–用于检测源表数据是否适合进行map-side聚合。检测的方法是:先对若干条数据进行map-side聚合,若聚合后的条数和聚合前的条数比值小于该值,则认为该表适合进行map-side聚合;否则,认为该表数据不适合进行map-side聚合,后续数据便不再进行map-side聚合。

set hive.map.aggr.hash.min.reduction=0.5;

–用于检测源表是否适合map-side聚合的条数。

set hive.groupby.mapaggr.checkinterval=100000;

–map-side聚合所用的hash table,占用map task堆内存的最大比例,若超出该值,则会对hash table进行一次flush。

set hive.map.aggr.hash.force.flush.memory.threshold=0.9;
(2)Skew-GroupBy优化

Skew-GroupBy的原理是启动两个MR任务,第一个MR按照随机数分区,将数据分散发送到Reduce,完成部分聚合,第二个MR按照分组字段分区,完成最终聚合。
相关参数如下:
–启用分组聚合数据倾斜优化

set hive.groupby.skewindata=true;

优化案例

(1)示例SQL语句

selectprovince_id,count(*)
from order_detail
group by province_id;

(2)优化前
该表数据中的province_id字段是存在倾斜的,若不经过优化,通过观察任务的执行过程,是能够看出数据倾斜现象的。
在这里插入图片描述
在这里插入图片描述
需要注意的是,hive中的map-side聚合是默认开启的,若想看到数据倾斜的现象,需要先将hive.map.aggr参数设置为false。

(3)优化思路
通过上述两种思路均可解决数据倾斜的问题。下面分别进行说明:
(1)Map-Side聚合
设置如下参数
–启用map-side聚合

set hive.map.aggr=true;

–关闭skew-groupby

set hive.groupby.skewindata=false;

开启map-side聚合后的执行计划如下图所示:
在这里插入图片描述
在这里插入图片描述

很明显可以看到开启map-side聚合后,reduce数据不再倾斜。

在这里插入图片描述

(2)Skew-GroupBy优化
设置如下参数
–启用skew-groupby

set hive.groupby.skewindata=true;

–关闭map-side聚合

set hive.map.aggr=false;

开启Skew-GroupBy优化后,可以很明显看到该sql执行在yarn上启动了两个mr任务,第一个mr打散数据,第二个mr按照打散后的数据进行分组聚合。
在这里插入图片描述
在这里插入图片描述

Join导致的数据倾斜

优化说明

前文提到过,未经优化的join操作,默认是使用common join算法,也就是通过一个MapReduce Job完成计算。Map端负责读取join操作所需表的数据,并按照关联字段进行分区,通过Shuffle,将其发送到Reduce端,相同key的数据在Reduce端完成最终的Join操作。
如果关联字段的值分布不均,就可能导致大量相同的key进入同一Reduce,从而导致数据倾斜问题。
由join导致的数据倾斜问题,有如下三种解决方案:

(1)map join

使用map join算法,join操作仅在map端就能完成,没有shuffle操作,没有reduce阶段,自然不会产生reduce端的数据倾斜。该方案适用于大表join小表时发生数据倾斜的场景。
相关参数如下:
–启动Map Join自动转换

set hive.auto.convert.join=true;

–一个Common Join operator转为Map Join operator的判断条件,若该Common Join相关的表中,存在n-1张表的大小总和<=该值,则生成一个Map Join计划,此时可能存在多种n-1张表的组合均满足该条件,则hive会为每种满足条件的组合均生成一个Map Join计划,同时还会保留原有的Common Join计划作为后备(back up)计划,实际运行时,优先执行Map Join计划,若不能执行成功,则启动Common Join后备计划。

set hive.mapjoin.smalltable.filesize=250000;

–开启无条件转Map Join

set hive.auto.convert.join.noconditionaltask=true;

–无条件转Map Join时的小表之和阈值,若一个Common Join operator相关的表中,存在n-1张表的大小总和<=该值,此时hive便不会再为每种n-1张表的组合均生成Map Join计划,同时也不会保留Common Join作为后备计划。而是只生成一个最优的Map Join计划。

set hive.auto.convert.join.noconditionaltask.size=10000000;
(2)skew join

skew join的原理是,为倾斜的大key单独启动一个map join任务进行计算,其余key进行正常的common join。原理图如下:
在这里插入图片描述

相关参数如下:
–启用skew join优化

set hive.optimize.skewjoin=true;

–触发skew join的阈值,若某个key的行数超过该参数值,则触发

set hive.skewjoin.key=100000;

这种方案对参与join的源表大小没有要求,但是对两表中倾斜的key的数据量有要求,要求一张表中的倾斜key的数据量比较小(方便走mapjoin)。
(3)调整SQL语句
若参与join的两表均为大表,其中一张表的数据是倾斜的,此时也可通过以下方式对SQL语句进行相应的调整。
假设原始SQL语句如下:A,B两表均为大表,且其中一张表的数据是倾斜的。

select*
from A
join B
on A.id=B.id;

其join过程如下:
在这里插入图片描述

图中1001为倾斜的大key,可以看到,其被发往了同一个Reduce进行处理。
调整SQL语句如下:

select*
from(select --打散操作concat(id,'_',cast(rand()*2 as int)) id,valuefrom A
)ta
join(select --扩容操作concat(id,'_',0) id,valuefrom Bunion allselectconcat(id,'_',1) id,valuefrom B
)tb
on ta.id=tb.id;

调整之后的SQL语句执行计划如下图所示:
在这里插入图片描述

优化案例

(1)示例SQL语句

select*
from order_detail od
join province_info pi
on od.province_id=pi.id;

(2)优化前
order_detail表中的province_id字段是存在倾斜的,若不经过优化,通过观察任务的执行过程,是能够看出数据倾斜现象的。
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

需要注意的是,hive中的map join自动转换是默认开启的,若想看到数据倾斜的现象,需要先将hive.auto.convert.join参数设置为false。
3)优化思路
上述两种优化思路均可解决该数据倾斜问题,下面分别进行说明:
(1)map join
设置如下参数
–启用map join

set hive.auto.convert.join=true;

–关闭skew join

set hive.optimize.skewjoin=false;

可以很明显看到开启map join以后,mr任务只有map阶段,没有reduce阶段,自然也就不会有数据倾斜发生。执行计划里面有MapJoin
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

(2)skew join
设置如下参数
–启动skew join

set hive.optimize.skewjoin=true;

–关闭map join

set hive.auto.convert.join=false;

–增加map端容器内存

set  mapreduce.map.memory.mb=2048;

开启skew join后,使用explain可以很明显看到执行计划如下图所示,说明skew join生效,任务既有common join,又有部分key走了map join。
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

并且该sql在yarn上最终启动了两个mr任务,而且第二个任务只有map没有reduce阶段,说明第二个任务是对倾斜的key进行了map join。

相关文章:

hive企业级调优策略之数据倾斜

测试所用到的数据参考&#xff1a; 原文链接&#xff1a;https://blog.csdn.net/m0_52606060/article/details/135080511 本教程的计算环境为Hive on MR。计算资源的调整主要包括Yarn和MR。 数据倾斜概述 数据倾斜问题&#xff0c;通常是指参与计算的数据分布不均&#xff0…...

MATLAB版本、labview版本、UHD版本 互相对应

LabVIEWMATLABUHD2019R2021bUHD_3.15.0.0-vendor2020R2022bUHD_4.1.0.4-vendorR2023bUHD_4.2.0.0-vendor 更换固件 MATLAB 更换固件指令 status sdruload(Device "X310", IPAddress 192.168.10.2)...

13 v-show指令

概述 v-show用于实现组件的显示和隐藏&#xff0c;和v-if单独使用的时候有点类似。不同的是&#xff0c;v-if会直接移除dom元素&#xff0c;而v-show只是让dom元素隐藏&#xff0c;而不会移除。 在实际开发中&#xff0c;v-show也经常被用到&#xff0c;需要重点掌握。 基本…...

23级新生C语言周赛(6)(郑州轻工业大学)

题目链接:ZZULIOJ 3110: 数(shu)数(shu)问题 分析: 看到这个题第一步想的是 先把每个平方数给求出来 然后枚举 但是时间复杂度大于1e8 交了一下TLE 但后来打表发现,好数太多了要是枚举的话 注定TLE 能不能间接的去做呢? 把不是的减去,那不就是好数了吗? 这个时候又是打表,会…...

关于“Python”的核心知识点整理大全24

目录 ​编辑 10.1.6 包含一百万位的大型文件 pi_string.py 10.1.7 圆周率值中包含你的生日吗 10.2 写入文件 10.2.1 写入空文件 write_message.py programming.txt 10.2.2 写入多行 10.2.3 附加到文件 write_message.py programming.txt 10.3 异常 10.3.1 处理 Ze…...

Vue - 基于Element UI封装一个表格动态列组件

1 组件需求背景 在后台管理系统中&#xff0c;表格的使用频率非常高&#xff0c;统一封装表格动态列组件并全局注册使用&#xff0c;可大大提升代码的复用性和可维护性。 2 全局注册 src/plugins/index.js&#xff1a; import columns from ./columns/indexexport default …...

计算机网络:DNS域名解析系统

我最近开了几个专栏&#xff0c;诚信互三&#xff01; > |||《算法专栏》&#xff1a;&#xff1a;刷题教程来自网站《代码随想录》。||| > |||《C专栏》&#xff1a;&#xff1a;记录我学习C的经历&#xff0c;看完你一定会有收获。||| > |||《Linux专栏》&#xff1…...

java面试:==和equals有什么区别?

在 Java 中&#xff0c;"" 和 "equals" 有着不同的作用&#xff1a; "" 运算符&#xff1a; 在基本数据类型&#xff08;如 int、char 等&#xff09;中&#xff0c;"" 用于比较它们的值是否相等。 在引用类型中&#xff0c;"&q…...

数字人SaaS系统无限生成AI数字人!

市面上数字人软件层出不穷&#xff0c;选择一款适合的数字人软件是成功的第一步&#xff0c;只需要一款软件就解决数字人直播和数字人短视频的制作&#xff0c;青否数字人SaaS系统&#xff08;数字人源码&#xff1a;zhibo175&#xff09;你值得拥有&#xff01; 青否数字人Saa…...

【MySQL】——数据类型及字符集

&#x1f383;个人专栏&#xff1a; &#x1f42c; 算法设计与分析&#xff1a;算法设计与分析_IT闫的博客-CSDN博客 &#x1f433;Java基础&#xff1a;Java基础_IT闫的博客-CSDN博客 &#x1f40b;c语言&#xff1a;c语言_IT闫的博客-CSDN博客 &#x1f41f;MySQL&#xff1a…...

Redis cluster集群设置密码

Redis cluster集群设置密码 1 备份数据 # 链接redis集群,执行rdb快照 bgsave # 备份dump.rdb文件 cp /data/redis/cluster/dump.rdb /data/redis/cluster/backup/dump.rdb.202312202 设置密码 必须保证每个节点的密码保持一致&#xff0c;不然 Redirected 的时候会失败 2.1…...

Docker 核心技术

Docker 定义&#xff1a;于 Linux 内核的 Cgroup&#xff0c;Namespace&#xff0c;以及 Union FS 等技术&#xff0c;对进程进行封装隔离&#xff0c;属于操作系统层面的虚拟化技术&#xff0c;由于隔离的进程独立于宿主和其它的隔离的进程&#xff0c;因此也称其为容器Docke…...

15 使用v-model绑定单选框

概述 使用v-model绑定单选框也比较常见&#xff0c;比如性别&#xff0c;要么是男&#xff0c;要么是女。比如单选题&#xff0c;给出多个选择&#xff0c;但是只能选择其中的一个。 在本节课中&#xff0c;我们演示一下这两种常见的用法。 基本用法 我们创建src/component…...

go语言指针变量定义及说明

go语言指针主要需要记住两个特殊符号&#xff0c; 一个是 & 用来获取变量对应的内存地址 另一个是 * 用来获取指针对应的变量值 下面是个最简单的go语言指针说明 package mainimport "fmt"//指针为内存地址func main() {var a string "指针对应的变量&…...

基于“Galera+MariaDB”搭建多主数据库集群的实例

1、什么是多主数据库集群 多主数据库集群是一种数据库集群架构&#xff0c;每个节点都可以接收写入操作和读取操作&#xff0c;并且通过心跳机制同步数据&#xff0c;保证数据一致性和高可用性。因多主数据库集群每个节点都可以承担读写操作&#xff0c;因此它可以充分利用各个…...

arcgis javascript api4.x加载天地图cgs2000坐标系

需求&#xff1a;arcgis javascript api4.x加载天地图cgs2000坐标系 效果&#xff1a; 示例代码&#xff1a; <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8"><meta name"viewport" content"wid…...

算法学习——回溯算法

回溯算法 理论基础回溯法的效率回溯法解决的问题回溯法模板 组合思路回溯法三部曲 代码 组合&#xff08;优化&#xff09;组合总和III思路代码 电话号码的字母组合思路回溯法来解决n个for循环的问题回溯三部曲代码 组合总和思路代码 组合总和II思路代码 理论基础 什么是回溯法…...

C语言—小小圣诞树

这个代码会询问用户输入圣诞树的高度&#xff0c;然后根据输入的高度在控制台上显示相应高度的圣诞树。 #include <stdio.h>int main() {int height, spaces, stars;printf("请输入圣诞树的高度: ");scanf("%d", &height);spaces height - 1;st…...

Android消息公告上下滚动切换轮播实现

自定义控件 通过继承TextSwitcher实现 直接上代码 public class NoticesSwitcher extends TextSwitcher implements ViewSwitcher.ViewFactory {private Context mContext;private List<Notice> mData;private final long DEFAULT_TIME_SWITCH_INTERVAL 1000;//1spri…...

tensorflow入门 自定义模型

前面说了自定义的层&#xff0c;接下来自定义模型&#xff0c;我们以下图为例子 这个模型没啥意义&#xff0c;单纯是为了写代码实现这个模型 首先呢&#xff0c;我们看有几个部分&#xff0c;dense不需要我们实现了&#xff0c;我们就实现Res&#xff0c;为了实现那个*3,我们…...

FastAPI 教程:从入门到实践

FastAPI 是一个现代、快速&#xff08;高性能&#xff09;的 Web 框架&#xff0c;用于构建 API&#xff0c;支持 Python 3.6。它基于标准 Python 类型提示&#xff0c;易于学习且功能强大。以下是一个完整的 FastAPI 入门教程&#xff0c;涵盖从环境搭建到创建并运行一个简单的…...

【大模型RAG】Docker 一键部署 Milvus 完整攻略

本文概要 Milvus 2.5 Stand-alone 版可通过 Docker 在几分钟内完成安装&#xff1b;只需暴露 19530&#xff08;gRPC&#xff09;与 9091&#xff08;HTTP/WebUI&#xff09;两个端口&#xff0c;即可让本地电脑通过 PyMilvus 或浏览器访问远程 Linux 服务器上的 Milvus。下面…...

新能源汽车智慧充电桩管理方案:新能源充电桩散热问题及消防安全监管方案

随着新能源汽车的快速普及&#xff0c;充电桩作为核心配套设施&#xff0c;其安全性与可靠性备受关注。然而&#xff0c;在高温、高负荷运行环境下&#xff0c;充电桩的散热问题与消防安全隐患日益凸显&#xff0c;成为制约行业发展的关键瓶颈。 如何通过智慧化管理手段优化散…...

汇编常见指令

汇编常见指令 一、数据传送指令 指令功能示例说明MOV数据传送MOV EAX, 10将立即数 10 送入 EAXMOV [EBX], EAX将 EAX 值存入 EBX 指向的内存LEA加载有效地址LEA EAX, [EBX4]将 EBX4 的地址存入 EAX&#xff08;不访问内存&#xff09;XCHG交换数据XCHG EAX, EBX交换 EAX 和 EB…...

学习STC51单片机32(芯片为STC89C52RCRC)OLED显示屏2

每日一言 今天的每一份坚持&#xff0c;都是在为未来积攒底气。 案例&#xff1a;OLED显示一个A 这边观察到一个点&#xff0c;怎么雪花了就是都是乱七八糟的占满了屏幕。。 解释 &#xff1a; 如果代码里信号切换太快&#xff08;比如 SDA 刚变&#xff0c;SCL 立刻变&#…...

学校时钟系统,标准考场时钟系统,AI亮相2025高考,赛思时钟系统为教育公平筑起“精准防线”

2025年#高考 将在近日拉开帷幕&#xff0c;#AI 监考一度冲上热搜。当AI深度融入高考&#xff0c;#时间同步 不再是辅助功能&#xff0c;而是决定AI监考系统成败的“生命线”。 AI亮相2025高考&#xff0c;40种异常行为0.5秒精准识别 2025年高考即将拉开帷幕&#xff0c;江西、…...

USB Over IP专用硬件的5个特点

USB over IP技术通过将USB协议数据封装在标准TCP/IP网络数据包中&#xff0c;从根本上改变了USB连接。这允许客户端通过局域网或广域网远程访问和控制物理连接到服务器的USB设备&#xff08;如专用硬件设备&#xff09;&#xff0c;从而消除了直接物理连接的需要。USB over IP的…...

视觉slam十四讲实践部分记录——ch2、ch3

ch2 一、使用g++编译.cpp为可执行文件并运行(P30) g++ helloSLAM.cpp ./a.out运行 二、使用cmake编译 mkdir build cd build cmake .. makeCMakeCache.txt 文件仍然指向旧的目录。这表明在源代码目录中可能还存在旧的 CMakeCache.txt 文件,或者在构建过程中仍然引用了旧的路…...

Java编程之桥接模式

定义 桥接模式&#xff08;Bridge Pattern&#xff09;属于结构型设计模式&#xff0c;它的核心意图是将抽象部分与实现部分分离&#xff0c;使它们可以独立地变化。这种模式通过组合关系来替代继承关系&#xff0c;从而降低了抽象和实现这两个可变维度之间的耦合度。 用例子…...

基于IDIG-GAN的小样本电机轴承故障诊断

目录 🔍 核心问题 一、IDIG-GAN模型原理 1. 整体架构 2. 核心创新点 (1) ​梯度归一化(Gradient Normalization)​​ (2) ​判别器梯度间隙正则化(Discriminator Gradient Gap Regularization)​​ (3) ​自注意力机制(Self-Attention)​​ 3. 完整损失函数 二…...