当前位置: 首页 > news >正文

tensorflow入门 自定义模型

前面说了自定义的层,接下来自定义模型,我们以下图为例子

 这个模型没啥意义,单纯是为了写代码实现这个模型

首先呢,我们看有几个部分,dense不需要我们实现了,我们就实现Res,为了实现那个*3,我们注意这个res可能需要多个res堆叠。

class ResBlock(keras.layers.Layer):def __init__(self, n_layers, n_neurons, **kwargs):super().__init__(**kwargs)self.hidden =[keras.layers.Dense(n_neurons,activation='elu',kernel_initializer='he_normal')for _ in range(n_layers)]def call(self, inputs):Z = inputsfor layer in self.hidden:Z = layer(Z)return inputs + Z

这样我们就能实现一个可以循环的Res了,call是必须的,因为在计算的时候需要它

如果我们写得再详细一点,可能要加入built,如果需要保存和加载模型,我们需要get_congit和save_congit,总之,基本的样子就是如此。

为了防止搞错,解释以下为什么没有使用built,是为了偷懒。

下面我们构建模型的时候,会指定输入的维度,其实再通用的情况下,我们根本不知道输入的维度,built会自动推断输入维度,所有本来应该写个built的,但是睡觉时间到了。

然后我们基于上面的自定义层,实现左边的模型

def ResModel(keras.Model):def __init__(self, out, **kwargs):super().__init__(*kwargs)self.hidden1 = keras,layers,Dense(30, activation='elu', kernel_initializer='he_normal')self.block1 = ResBlock(2,10)self.block2 = ResBlock(2,20)self.out = keras,layers,Dense(out)def call(self, inputs):Z = self.hidden1(inputs)for _ in range(4):Z = self.block1(Z)Z = self.block2(Z)return self.out(Z)

我觉得在此以及无需多言了。睡觉睡觉。

相关文章:

tensorflow入门 自定义模型

前面说了自定义的层,接下来自定义模型,我们以下图为例子 这个模型没啥意义,单纯是为了写代码实现这个模型 首先呢,我们看有几个部分,dense不需要我们实现了,我们就实现Res,为了实现那个*3,我们…...

虚拟机启动 I/O error in “xfs_read_agi+0x95“

1.在选择系统界面按e 进入维护模式 2.找到ro把ro改成 rw init/sysroot/bin/sh 然后按Ctrlx 3.找到坏掉的分区,以nvme0n1p3为例进行修复 xfs_repair -d /dev/nvme0n1p3 4.init 6 重新启动 以下情况 先umount 再修复 则修复成功...

【MYSQL】-库的操作

💖作者:小树苗渴望变成参天大树🎈 🎉作者宣言:认真写好每一篇博客💤 🎊作者gitee:gitee✨ 💞作者专栏:C语言,数据结构初阶,Linux,C 动态规划算法🎄 如 果 你 …...

网络协议小记

一、TCP/IP协议 作为一个小萌新,当然我无法将tcp/ip协议的大部分江山和盘托出,但是其中很多面试可能问到的知识,我觉得有必要总结一下! 首先,在学习tcp/ip协议之前,我们必须搞明白什么是tcp/ip协议。 1、…...

STM32-I2C通讯-AHT20温湿度检测

非常感谢,提供的视频学习 https://www.bilibili.com/video/BV1QN411D7ak/?spm_id_from333.788&vd_source8ca4826038edd44bb618801808a5e076 该文章注意:串口显示中文会乱码,必须选用支持ASCII的串口助手,才能正常显示中文。…...

【机器学习】043_准确率、精确率、召回率

一、定义 在处理偏斜数据集时,通常使用不同的误差度量,而不仅仅是使用分类误差来衡量算法性能。 1. 混淆矩阵的概念 二分类问题的混淆矩阵为2X2矩阵,由四部分组成: 假阴性(FN):模型预测为负…...

【Qt开发流程】之文件目录、文件、输入和输出

概述 应用程序操作过程中,经常要对设备或文件进行读或者写操作。也会经常对文件及目录进行操作。 在Qt中,QIODevice类是Qt中所有进行I/O操作的设备的基类,比如QFile、 QIODevice为支持数据块读写的设备(如QFile、QBuffer和QTcpSo…...

CSS的基本选择器及高级选择器(附详细示例以及效果图)

Hi i,m JinXiang ⭐ 前言 ⭐ 本篇文章主要介绍HTML中CSS的基础选择及高级选择器(详解)以及部分理论知识 🍉欢迎点赞 👍 收藏 ⭐留言评论 📝私信必回哟😁 🍉博主收将持续更新学习记录获&#xf…...

股票价格预测 | Python实现基于Stacked-LSTM的股票预测模型,可预测未来(keras)

文章目录 效果一览文章概述模型描述源码设计效果一览 文章概述 以股票价格预测为例,基于Stacked-LSTM的股票预测模型(keras),可预测未来。 模型描述 LSTM 用于处理序列数据,如时间序列、文本和音频。相对于传统的RNN,LSTM更擅长捕获长期依赖关系,...

数据可视化---离群值展示

内容导航 类别内容导航机器学习机器学习算法应用场景与评价指标机器学习算法—分类机器学习算法—回归机器学习算法—聚类机器学习算法—异常检测机器学习算法—时间序列数据可视化数据可视化—折线图数据可视化—箱线图数据可视化—柱状图数据可视化—饼图、环形图、雷达图统…...

LeetCode Hot100 51.N皇后

题目: 按照国际象棋的规则,皇后可以攻击与之处在同一行或同一列或同一斜线上的棋子。 n 皇后问题 研究的是如何将 n 个皇后放置在 nn 的棋盘上,并且使皇后彼此之间不能相互攻击。 给你一个整数 n ,返回所有不同的 n 皇后问题 的…...

机器学习 | 贝叶斯方法

不同于KNN最近邻算法的空间思维,线性算法的线性思维,决策树算法的树状思维,神经网络的网状思维,SVM的升维思维。 贝叶斯方法强调的是 先后的因果思维。 监督式模型分为判别式模型和生成式模型。 判别模型和生成模型的区别&#xf…...

缓存的定义及重要知识点

文章目录 缓存的意义缓存的定义缓存原理缓存的基本思想缓存的优势缓存的代价 缓存的重要知识点 缓存的意义 在互联网高访问量的前提下,缓存的使用,是提升系统性能、改善用户体验的唯一解决之道。 缓存的定义 缓存最初的含义,是指用于加速 …...

TrustZone之顶层软件架构

在处理器中的TrustZone和系统架构中,我们探讨了硬件中的TrustZone支持,包括Arm处理器和更广泛的内存系统。本主题关注TrustZone系统中发现的软件架构。 一、顶层软件架构 下图显示了启用TrustZone的系统的典型软件栈: 【注意】:为简单起见,该图不包括管理程序,尽管它们可…...

SpringBoot Whitelabel Error Page 报错--【已解决】

springboot 报错信息如下 这个报错页面就是个404 ,代表你访问的url 没有对应的的requestmapping 其实没啥影响的一个问题,但是看到Error 就是不爽,改了他丫的 解决方法如下 一、调整application.properties配置【治标不治本】 server.err…...

02.Git常用基本操作

一、基本配置 (1)打开Git Bash (2)配置姓名和邮箱 git config --global user.name "Your Name" git config --global user.email "Your email" 因为Git是分布式版本控制工具,所以每个用户都需要…...

黑盒测试中关键截图如何打点

黑盒测试中关键截图如何打点Android黑盒测试过程中如何进行有效的打点是我们经常遇到的问题,我们一般会在脚本内部进行数据打点,也可以使用其他进程录屏或截图。那我们如何选取合适的方式进行打点记录呢?下图是对常用打点方式的统计&#xff…...

画图之C4架构图idea和vscode环境搭建篇

VS Code 下C4-PlantUML安装 安装VS Code 直接官网下载安装即可,过程略去。 安装PlantUML插件 在VS Code的Extensions窗口中搜索PlantUML,安装PlantUML插件。 配置VS Code代码片段 安装完PlantUML之后,为了提高效率,我们最好安装PlantUML相关的代码片段。 打开VS Cod…...

安卓小练习-校园闲置交易APP(SQLite+SimpleCursorAdapter适配器)

环境: SDK:34 JDK:20.0.2 编写工具:Android Studio 2022.3.1 整体效果(视频演示): 小练习-闲置社区APP演示视频-CSDN直播 部分效果截图: 整体工作流程: 1.用户登录&…...

Pycharm 如何更改成中文版| Python循环语句| for 和 else 的搭配使用

🌈write in front🌈 🧸大家好,我是Aileen🧸.希望你看完之后,能对你有所帮助,不足请指正!共同学习交流. 🆔本文由Aileen_0v0🧸 原创 CSDN首发🐒 如…...

关于 WASM:1. WASM 基础原理

一、WASM 简介 1.1 WebAssembly 是什么? WebAssembly(WASM) 是一种能在现代浏览器中高效运行的二进制指令格式,它不是传统的编程语言,而是一种 低级字节码格式,可由高级语言(如 C、C、Rust&am…...

蓝桥杯3498 01串的熵

问题描述 对于一个长度为 23333333的 01 串, 如果其信息熵为 11625907.5798&#xff0c; 且 0 出现次数比 1 少, 那么这个 01 串中 0 出现了多少次? #include<iostream> #include<cmath> using namespace std;int n 23333333;int main() {//枚举 0 出现的次数//因…...

Java数值运算常见陷阱与规避方法

整数除法中的舍入问题 问题现象 当开发者预期进行浮点除法却误用整数除法时,会出现小数部分被截断的情况。典型错误模式如下: void process(int value) {double half = value / 2; // 整数除法导致截断// 使用half变量 }此时...

比较数据迁移后MySQL数据库和OceanBase数据仓库中的表

设计一个MySQL数据库和OceanBase数据仓库的表数据比较的详细程序流程,两张表是相同的结构,都有整型主键id字段,需要每次从数据库分批取得2000条数据,用于比较,比较操作的同时可以再取2000条数据,等上一次比较完成之后,开始比较,直到比较完所有的数据。比较操作需要比较…...

沙箱虚拟化技术虚拟机容器之间的关系详解

问题 沙箱、虚拟化、容器三者分开一一介绍的话我知道他们各自都是什么东西&#xff0c;但是如果把三者放在一起&#xff0c;它们之间到底什么关系&#xff1f;又有什么联系呢&#xff1f;我不是很明白&#xff01;&#xff01;&#xff01; 就比如说&#xff1a; 沙箱&#…...

李沐--动手学深度学习--GRU

1.GRU从零开始实现 #9.1.2GRU从零开始实现 import torch from torch import nn from d2l import torch as d2l#首先读取 8.5节中使用的时间机器数据集 batch_size,num_steps 32,35 train_iter,vocab d2l.load_data_time_machine(batch_size,num_steps) #初始化模型参数 def …...

数据可视化交互

目录 【实验目的】 【实验原理】 【实验环境】 【实验步骤】 一、安装 pyecharts 二、下载数据 三、实验任务 实验 1&#xff1a;AQI 横向对比条形图 代码说明&#xff1a; 运行结果&#xff1a; 实验 2&#xff1a;AQI 等级分布饼图 实验 3&#xff1a;多城市 AQI…...

八、【ESP32开发全栈指南:UDP客户端】

1. 环境准备 安装ESP-IDF v4.4 (官方指南)确保Python 3.7 和Git已安装 2. 创建项目 idf.py create-project udp_client cd udp_client3. 完整优化代码 (main/main.c) #include <string.h> #include "freertos/FreeRTOS.h" #include "freertos/task.h&…...

项目研究:使用 LangGraph 构建智能客服代理

概述 本教程展示了如何使用 LangGraph 构建一个智能客服代理。LangGraph 是一个强大的工具&#xff0c;可用于构建复杂的语言模型工作流。该代理可以自动分类用户问题、分析情绪&#xff0c;并根据需要生成回应或升级处理。 背景动机 在当今节奏飞快的商业环境中&#xff0c…...

C#学习12——预处理

一、预处理指令&#xff1a; 解释&#xff1a;是在编译前由预处理器执行的命令&#xff0c;用于控制编译过程。这些命令以 # 开头&#xff0c;每行只能有一个预处理指令&#xff0c;且不能包含在方法或类中。 个人理解&#xff1a;就是游戏里面的备战阶段&#xff08;不同对局…...