sklearn和tensorflow的理解
人工智能的实现是基于机器学习,机器学习的一个方法是神经网络,以及各种机器学习算法库。
有监督学习:一般数据构成是【特征值+目标值】
无监督学习:一般数据构成是【特征值】
Scikit-learn(sklearn)的定位是通用机器学习库,传统的机器学习库。
sklearn主要适合中小型的、实用机器学习项目,尤其是那种数据量不大且需要使用者手动对数据进行处理,并选择合适模型的项目。这类项目往往在CPU上就可以完成,对硬件要求低。
sklearn更倾向于使用者可以自行对数据进行处理,比如选择特征、压缩维度、转换格式,是传统机器学习库,SKLearn中,因为做了上层的封装,分类模型、回归模型、聚类与降维模型、预处理器等等都叫做估计器(estimator)
①机器学习基础知识:机器学习定义与四要素:数据、任务、性能度量和模型。机器学习概念,以便和SKLearn对应匹配上。
②SKLearn讲解:API设计原理,SKLearn几大特点:一致性、可检验、标准类、可组合和默认值,以及SKLearn自带数据以及储存格式。
③SKLearn三大核心API讲解:包括估计器、预测器和转换器。这个板块很重要,大家实际应用时主要是借助于核心API落地。
④SKLearn高级API讲解:包括简化代码量的流水线(Pipeline估计器),集成模型(Ensemble估计器)、有多类别-多标签-多输出分类模型(Multiclass 和 Multioutput 估计器)和模型选择工具(Model Selection估计器)。
TensorFlow(tf)的定位主要是深度学习库,tf主要适合已经明确了解需要用深度学习,且数据处理需求不高的项目。这类项目往往数据量较大,且最终需要的精度更高,一般都需要GPU加速运算
不过小样本的也可以使用Tf的Keras来完成:一般使用流程
model = Sequential() # 定义模型
model.add(Dense(units=64, activation='relu', input_dim=100)) # 定义网络结构
model.add(Dense(units=10, activation='softmax')) # 定义网络结构
model.compile(loss='categorical_crossentropy', # 定义loss函数、优化方法、评估标准optimizer='sgd',metrics=['accuracy'])
model.fit(x_train, y_train, epochs=5, batch_size=32) # 训练模型
loss_and_metrics = model.evaluate(x_test, y_test, batch_size=128) # 评估模型
classes = model.predict(x_test, batch_size=128) # 使用训练好的数据进行预测常用:
model.fit训练
loss,accuracy = model.evaluate模型评估计算准确率
model.predict预测model.summary 打印模型结构
model.get_config
DNN介绍:
深度神经网络(DNN)是一种多层无监督神经网络,并且将上一层的输出特征作为下一层的输入进行特征学习,通过逐层特征映射后,将现有空间样本的特征映射到另一个特征空间,以此来学习对现有输入具有更好的特征表达。深度神经网络具有多个非线性映射的特征变换,可以对高度复杂的函数进行拟合。如果将深层结构看作一个神经元网络,则深度神经网络的核心思想可用三个点描述如下:
(1)每层网络的预训练均采用无监督学习;
(2)无监督学习逐层训练每一层,即将上一层输出作 下一层的输入;
(3)有监督学习来微调所有层(加上一个用于分类的分类器)。
深度神经网络与传统神经网络的主要区别在于训练机制。
为了克服传统神经网络容易过拟合及训练速度慢等不足,深度神经网络整体上采用逐层预训练的训练机制,而不是采用传统神经网络的反向传播训练机制。
优点:
- 克服了人工设计特征费时、费力的缺点;
- 通过逐层数据预训练得到每层的初级特征;
- 分布式数据学习更加有效(指数级);
- 相比浅层建模方式,深层建模能更细致高效的表示实际的复杂非线性问题。
DNN模型的神经网络层分为三类,其中第一层为输入层,最后一层为输出层,中间都为隐藏层。每一层之前是完全连接的,整体上看是复杂的,但从局部来看,实质上还是感知机模型。DNN可拟合任意函数。
相关文章:
sklearn和tensorflow的理解
人工智能的实现是基于机器学习,机器学习的一个方法是神经网络,以及各种机器学习算法库。 有监督学习:一般数据构成是【特征值目标值】 无监督学习:一般数据构成是【特征值】 Scikit-learn(sklearn)的定位是通用机器学习库&…...
css中BFC
css BFC BFC具有以下特性创建BFC的方式有多种BFC的应用场景和作用 扩展: CSS动画 transition: 过渡动画animation / keyframestransform都有哪些属性 举例 css BFC BFC,即块级格式化上下文(Block Formatting Context)…...
华为OD机试 - 小朋友来自多少小区(Java JS Python C)
题目描述 幼儿园组织活动,老师布置了一个任务: 每个小朋友去了解与自己同一个小区的小朋友还有几个。 我们将这些数量汇总到数组 garden 中。 请根据这些小朋友给出的信息,计算班级小朋友至少来自几个小区? 输入描述 输入:garden[] = {2, 2, 3} 输出描述 输出:7 备…...
前端:NPM的介绍和使用
一、NPM的介绍 NPM是Node.js的包管理器,用于管理Node.js的包NPM提供了方便的方式来安装、管理和分享Node.js的包 二、NPM的使用 1. 安装NPM 要使用NPM,首先需要安装Node.js。安装完成后,可以在命令行中运行以下命令来检查Node.js和NPM是否…...
力扣57. 插入区间
双指针法 思路: 用待插入区间左右边界初始化双指针 left 和 right;遍历待归并区间: 如果元素整体边界在 [left, right] 左侧(item[1] < left),则将给元素插入结果数组中;如果元素整体边界在…...
Linux c++开发-11-Socket TCP编程简单案例
服务端: #include <stdio.h> #include <stdlib.h> #include <string.h> #include <unistd.h> #include <netinet/in.h> #include <sys/types.h>#include <errno.h>int main(void) {//1.socketint server_sock socket(A…...
ros2机器人常规控制流程
The joint_state_publisher reads the robot_description parameter from the parameter server, finds all of the non-fixed joints and publishes a JointState message with all those joints defined.也就是说如果我们不需要控制机器人运动,只需要一个节点就可…...
分布式全局ID之雪花算法
系列文章目录 提示:这里可以添加系列文章的所有文章的目录,目录需要自己手动添加 雪花算法 提示:写完文章后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 系列文章目录前言一、什么是雪花算法?…...
拿到服务器该做的事和升级docker engine
sudo apt-get install docker-ce docker-ce-cli containerd.io docker-buildx-plugin docker-compose-pluginsudo -i # 切换到 root 用户apt update -y # 升级 packagesapt install wget curl sudo vim git -y # Debian 系统比较干净,安装常用的软件 安装docker …...
【VScode和Leecode的爱恨情仇】command ‘leetcode.signin‘ not found
文章目录 一、关于command ‘leetcode.signin‘ not found的问题二、解决方案第一,没有下载Nodejs;第二,有没有在VScode中配置Nodejs第三,力扣的默认在VScode请求地址中请求头错误首先搞定配置其次搞定登入登入方法一:…...
mangokit:golang web项目管理工具,使用proto定义http路由和错误
文章目录 前言1、mangokit介绍1.1 根据proto文件生成http路由1.2 根据proto文件生成响应码1.3 使用wire来管理依赖注入 2、mangokit实现2.1 protobuf插件开发2.2 mangokit工具 3、使用示例3.1 创建新项目3.2 添加新的proto文件3.3 代码生成 前言 在使用gin框架开发web应用时&a…...
微信小程序实现一个简单的登录功能
微信小程序实现一个简单的登录功能 功能介绍login.wxmllogin.jsuserInfo.wxmluserInfo.js解析 功能介绍 微信小程序实现一个简单的登录功能。包括一个登录页面和一个用户信息展示页面。在登录页面中输入用户名和密码,点击登录按钮进行验证,如果验证成功&…...
whisper深入-语者分离
文章目录 学习目标:如何使用whisper学习内容一:whisper 转文字1.1 使用whisper.load_model()方法下载,加载1.2 使用实例对文件进行转录1.3 实战 学习内容二:语者分离(pyannote.audio)pyannote.audio是huggi…...
LuaJava操作Java的方法
最近在学习lua,然后顺便看了下luaj,可能用的人比较少,网上关于luaj的文章较少,其中在网上找到这个博主的相关文章,很详细,对于要学习luaj的小伙伴可以两篇一起查看,本文在此基础上进行扩展。 …...
oracle怎样才算开启了内存大页?
oracle怎样才算开启了内存大页? 关键核查下面三点: 1./etc/sysctl.conf vm.nr_hugepages16384这是给了32G,计划sga给30G,一般需多分配2-4G sysctl -p生效 看cat /proc/meminfo|grep Huge啥结果? 这种明显是配了…...
【halcon深度学习之那些封装好的库函数】determine_dl_model_detection_param
determine_dl_model_detection_param 目标检测的数据准备过程中的有一个库函数determine_dl_model_detection_param “determine_dl_model_detection_param” 直译为 “确定深度学习模型检测参数”。 这个过程会自动针对给定数据集估算模型的某些高级参数,强烈建议…...
跟着我学Python进阶篇:01.试用Python完成一些简单问题
往期文章 跟着我学Python基础篇:01.初露端倪 跟着我学Python基础篇:02.数字与字符串编程 跟着我学Python基础篇:03.选择结构 跟着我学Python基础篇:04.循环 跟着我学Python基础篇:05.函数 跟着我学Python基础篇&#…...
neo4j-Py2neo使用
neo4j-Py2neo(一):基本库介绍使用 py2neo的文档地址:https://neo4j-contrib.github.io/py2neo/ py2neo的本质是可以采用两种方式进行操作,一种是利用cypher语句,一种是使用库提供的DataTypes,Data类的实例需要和远程…...
uint29传输格式
前言 不知道谁想出来的。 反正我是想不到。 我看网上也没人讲这个。 写篇博客帮一下素未谋面的网友。 uint29 本质上是网络传输的时候,借用至多4字节Bytes,表达29位的无符号整数。 读8位数字,判断小于128? 是的话,返回末7位…...
Linux:终端定时自动注销
这样防止了,当我们临时离开电脑这个空隙,被坏蛋给趁虚而入 定几十秒或者分钟,如果这个时间段没有输入东西那么就会自动退出 全局生效 这个系统中的所有用户生效 vim /etc/profile在末尾加入TMOUT10 TMOUT10 这个就是10 秒,按…...
STM32F103RCT6开发板M3单片机教程06--定时器中断
前言 除非特别说明,本章节描述的模块应用于整个STM32F103xx微控制器系列,因为我们使用是STM32F103RCT6开发板是mini最小系统板。本教程使用是(光明谷SUN_STM32mini开发板) STM32F10X定时器(Timer)基础 首先了解一下是STM32F10X…...
数据库故障Waiting for table metadata lock
场景:早上来发现一个程序,链接mysql数据库有点问题,随后排查,因为容器在k8s里面。所以尝试重启了pod没有效果 一、重启pod: 这里是几种在Kubernetes中重启Pod的方法: 删除Pod,利用Deployment重建 kubectl delete pod mypodDepl…...
Springboot数据校验与异常篇
一、异常处理 1.1Http状态码 HTTP状态码是指在HTTP通信过程中,服务器向客户端返回的响应状态。它通过3位数字构成,第一个数字定义了响应的类别,后两位数字没有具体分类作用。以下是常见的HTTP状态码及其含义: - 1xx(信…...
第三十六章 XML 模式的高级选项 - 创建子类型的替换组
文章目录 第三十六章 XML 模式的高级选项 - 创建子类型的替换组创建子类型的替换组将子类限制在替换组中 第三十六章 XML 模式的高级选项 - 创建子类型的替换组 创建子类型的替换组 XML 模式规范还允许定义替换组,这可以是创建选择的替代方法。语法有些不同。无需…...
堆与二叉树(上)
本篇主要讲的是一些概念,推论和堆的实现(核心在堆的实现这一块) 涉及到的一些结论,证明放到最后,可以选择跳过,知识点过多,当复习一用差不多,如果是刚学这一块的,建议打…...
HBase查询的一些限制与解决方案
Apache HBase 是一个开源的、非关系型、分布式数据库,它是 Hadoop 生态系统的一部分,用于存储和处理大量的稀疏数据。HBase 在设计上是为了提供快速的随机读写能力,但与此同时,它也带来了一些查询上的限制: 没有SQL支持…...
软件开发 VS Web开发
我的新书《Android App开发入门与实战》已于2020年8月由人民邮电出版社出版,欢迎购买。点击进入详情 目录 介绍: 角色和职责: 软件开发人员: Web开发人员: 技能: 软件开发人员: Web开发人…...
基于Springboot的旅游网站设计与实现(论文+调试+源码)
项目描述 临近学期结束,还是毕业设计,你还在做java程序网络编程,期末作业,老师的作业要求觉得大了吗?不知道毕业设计该怎么办?网页功能的数量是否太多?没有合适的类型或系统?等等。这里根据疫情当下,你想解决的问…...
【从零开始学习--设计模式--策略模式】
返回首页 前言 感谢各位同学的关注与支持,我会一直更新此专题,竭尽所能整理出更为详细的内容分享给大家,但碍于时间及精力有限,代码分享较少,后续会把所有代码示例整理到github,敬请期待。 此章节介绍策…...
条款6:若不想使用编译器自动生成的函数,就该明确拒绝
有些场景我们不需要编译器默认实现的构造函数,拷贝构造函数,赋值函数,这时候我们应该明确的告诉编译器,我们不需要,一个可行的方法是将拷贝构造函数和赋值函数声明为private。 class HomeForSale { ... }; HomeForSal…...
四川广安网站建设/网络软文范文
前面唠叨 最近公司app中有些列表在滑动的时候会有卡顿现象,我就开始着手解决这些问题,解决问题之前首先要分析列表滑动的性能瓶颈在什么地方。因为之前不会正确使用TraceView这个工具,主要是看不懂TraceView界面下方数据指标的值代表什么意思…...
贵南县wap网站建设公司/综合搜索引擎
单例模式用于当一个类只能有一个实例的时候, 通常情况下这个“单例”代表的是某一个物理设备比如打印机,或是某种不可以有多个实例同时存在的虚拟资源或是系统属性比如一个程序的某个引擎或是数据。用单例模式加以控制是非常有必要的。 单例模式需要达到…...
官方网站下载qq最新版/如何做网站网页
《面向对象》 你知道吗? 自从那次不经意间把你导入我的心。 就从此再也无法导出了。 真的希望从此你便是我私有的。 别人无论如何也无法访问你的心。 不过你放心,我会精心的保护它。 我能抽象出整个世界。 但是我不能抽象你。 因为你在我心中是…...
网站策划书格式/郑州客串seo
前言 cloudflare 是一家国外的 CDN 加速服务商,还是很有名气的。提供免费和付费的加速和网站保护服务。以前推荐过的百度云加速的国外节点就是和 cloudflare 合作使用的 cloudflare 的节点。 cloudflare 提供了不同类型的套餐,即使是免费用户,…...
wap网站搭建/域名停靠网页app推广大全
一,问题描述 用postman调用上传接口,基本每两次调用会有一次报错,如下 {"timestamp": "2023-04-11T03:00:15.4690000","status": 500,"error": "Internal Server Error","exceptio…...
58同城网招聘找工作建筑工程/佛山seo外包平台
磁盘阵列df -h看文件系统使用率 : format看可用磁盘 : cfgadm -al看总线连接...