当前位置: 首页 > news >正文

智能优化算法应用:基于学校优化算法3D无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用:基于学校优化算法3D无线传感器网络(WSN)覆盖优化 - 附代码

文章目录

  • 智能优化算法应用:基于学校优化算法3D无线传感器网络(WSN)覆盖优化 - 附代码
    • 1.无线传感网络节点模型
    • 2.覆盖数学模型及分析
    • 3.学校优化算法
    • 4.实验参数设定
    • 5.算法结果
    • 6.参考文献
    • 7.MATLAB代码

摘要:本文主要介绍如何用学校优化算法进行3D无线传感器网(WSN)覆盖优化。

1.无线传感网络节点模型

本文主要基于0/1模型,进行寻优。在二维平面上传感器节点的感知范围是一个以节点为圆心,半径为 R n R_n Rn的圆形区域,该圆形区域通常被称为该节点的“感知圆盘”, R n R_n Rn称为传感器节点的感知半径,感知半径与节点内置传感器件的物理特性有关,假设节点 n n n的位置坐标为 ( x n , y n , z n ) (x_n,y_n,z_n) (xn,yn,zn)在0-1感知模型中,对于平面上任意一点 p ( x p , y p , z p ) p(x_p,y_p,z_p) p(xp,yp,zp),则节点 n n n监测到区域内点 p p p的事件发生概率为:
P r ( n , p ) = { 1 , d ( n , p ) ≤ R n 0 , e s l e (1) P_r(n,p)=\begin{cases}1, \,d(n,p)\leq R_n\\ 0,\, esle \end{cases}\tag{1} Pr(n,p)={1,d(n,p)Rn0,esle(1)
其中 d ( n , p ) = ( x n − x p ) 2 + ( y n − y p ) 2 + ( z n − z p ) 2 d(n,p)=\sqrt{(x_n-x_p)^2+(y_n-y_p)^2 + (z_n-z_p)^2} d(n,p)=(xnxp)2+(ynyp)2+(znzp)2 为点和之间的欧式距离。

2.覆盖数学模型及分析

现假定目标监测区域为二维平面,在区域 A r e a Area Area上投放同型结构传感器节点的数目为N,每个节点的位置坐标值假设已被初始化赋值,且节点的感知半径r。传感器节点集则表示为:
N o d e { x 1 , . . . , x N } (2) Node\{x_1,...,x_N\} \tag{2} Node{x1,...,xN}(2)
其中 n o d e i = { x i , y i , z i , r } node_i=\{x_i,y_i,z_i,r\} nodei={xi,yi,zi,r},表示以节点 ( x i , y i , z i ) (x_i,y_i,z_i) (xi,yi,zi)为圆心,r为监测半径的球,假定监测区域 A r e a Area Area被数字化离散为 m ∗ n ∗ l m*n*l mnl个空间点,空间点的坐标为 ( x , y , z ) (x,y,z) (x,y,z),目标点与传感器节点间的距离为:
d ( n o d e i , p ) = ( x i − x ) 2 + ( y i − y ) 2 + ( z i − z ) 2 (3) d(node_i,p)=\sqrt{(x_i-x)^2+(y_i-y)^2 + (z_i-z)^2}\tag{3} d(nodei,p)=(xix)2+(yiy)2+(ziz)2 (3)
目标区域内点被传感器节点所覆盖的事件定义为 c i c_i ci。则该事件发生的概率 P c i P{c_i} Pci即为点 ( x , y , z ) (x,y,z) (x,y,z)被传感器节点 n o d e i node_i nodei所覆盖的概率:
P c o v ( x , y , z , n o d e i ) = { 1 , i f d ( n o d e i , p ) ≤ r 0 , e s l e (4) P_{cov}(x,y,z,node_i)=\begin{cases}1, if\,d(node_i,p)\leq r\\ 0,\, esle \end{cases}\tag{4} Pcov(x,y,z,nodei)={1,ifd(nodei,p)r0,esle(4)
我们将所有的传感器节点在目标监测环境中的区域覆盖率 C o v e r R a t i o CoverRatio CoverRatio定义为传感器节点集的覆盖面积与监测区域的面积之比,如公式所示:
C o v e r R a t i o = ∑ P c o v m ∗ n ∗ l (5) CoverRatio = \frac{\sum P_{cov}}{m*n*l}\tag{5} CoverRatio=mnlPcov(5)
那我们的最终目标就是找到一组节点使得覆盖率最大。

3.学校优化算法

学校优化算法原理请参考:https://blog.csdn.net/u011835903/article/details/121052583
学校优化算法是寻找最小值。于是适应度函数定义为未覆盖率最小,即覆盖率最大。如下:
f u n = a r g m i n ( 1 − C o v e r R a t i o ) = a r g m i n ( 1 − ∑ P c o v m ∗ n ∗ l ) (6) fun = argmin(1 - CoverRatio) = argmin(1-\frac{\sum P_{cov}}{m*n*l}) \tag{6} fun=argmin(1CoverRatio)=argmin(1mnlPcov)(6)

4.实验参数设定

无线传感器覆盖参数设定如下:

%% 设定WNS覆盖参数,
%% 默认输入参数都是整数,如果想定义小数,请自行乘以系数变为整数再做转换。
%% 比如范围1*1,R=0.03可以转换为100*100,R=3;
%区域范围为AreaX*AreaY*AreaZ
AreaX = 100;
AreaY = 100;
AreaZ = 100;
N = 20 ;%覆盖节点数
R = 15;%通信半径

学校优化算法参数如下:

%% 设定学校优化优化参数
pop=30; % 种群数量
Max_iteration=30; %设定最大迭代次数
lb = ones(1,3*N);
ub = [AreaX.*ones(1,N),AreaY.*ones(1,N),AreaZ.*ones(1,N)];
dim = 3*N;%维度为3N,N个坐标点

5.算法结果

在这里插入图片描述
在这里插入图片描述

从结果来看,覆盖率在优化过程中不断上升。表明学校优化算法对覆盖优化起到了优化的作用。

6.参考文献

[1] 史朝亚. 基于PSO算法无线传感器网络覆盖优化的研究[D]. 南京理工大学.

7.MATLAB代码

相关文章:

智能优化算法应用:基于学校优化算法3D无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用:基于学校优化算法3D无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用:基于学校优化算法3D无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.学校优化算法4.实验参数设定5.算法结果6.…...

【MATLAB第85期】基于MATLAB的2023年智能进化算法/元启发式算法合集(持续更新)

【MATLAB第85期】基于MATLAB的2023年智能进化算法/元启发式算法合集(持续更新) 1.海象进化算法(Walrus Optimization Algorithm) 作者:Pavel Trojovsk and Mohammad Dehghani 2.暴龙优化算法(Tyrannosa…...

[Realtek sdk-3.4.14b]RTL8197FH-VG+RTL8812F WiFi使用功率限制功能使用说明

sdk说明 ** Gateway/AP firmware v3.4.14b – Aug 26, 2019**  Wireless LAN driver changes as:  Refine WiFi Stability and Performance  Add 8812F MU-MIMO  Add 97G/8812F multiple mac-clone  Add 97G 2T3R antenna diversity  Fix 97G/8812F/8814B MP issu…...

Vue中为什么data属性是一个函数而不是一个对象?(看完就会了)

文章目录 一、实例和组件定义data的区别二、组件data定义函数与对象的区别三、原理分析四、结论 一、实例和组件定义data的区别 vue实例的时候定义data属性既可以是一个对象,也可以是一个函数 const app new Vue({el:"#app",// 对象格式data:{foo:&quo…...

Linux中一些知识积累(持续补充)

如何安装Eigen3库? 在linux中直接命令安装。Eigen/Dense 是 Eigen 库中的一个模块,提供了对密集矩阵(Dense Matrix)的支持。 sudo apt install libeigen3-devLinux 中VScode中运行C时,gdb 的Launch与Attach有什么区别…...

内网渗透基础

内网 内网指的是内部局域网,常说的LAN(local area network)。常见家庭wifi网络和小型的企业网络,通常内部计算机直接访问路由器设备,路由器设备接入移动电信的光纤实现上网。 内部局域网可以通过交换机/防火墙组成多个…...

【2023年网络安全优秀创新成果大赛专刊】银行数据安全解决方案(天空卫士)

在2023年网络安全优秀创新成果大赛,成都分站中,天空卫士银行数据安全方案获得优秀解决方案奖。与此同时,天空卫士受信息安全杂志邀请,编写《银行数据安全解决方案》。12月6日,天空卫士编写的《银行数据安全解决方案》做…...

嵌入式串口输入详细实例

学习目标 掌握串口初始化流程掌握串口输出单个字符掌握串口输出字符串掌握通过串口printf熟练掌握串口开发流程学习内容 需求 串口循环输出内容到PC机。 串口数据发送 添加Usart功能。 首先,选中Firmware,鼠标右键,点击Manage Project Items 接着,将gd32f4xx_usart.c添…...

springboot(ssm智慧生活商城系统 网上购物系统Java系统

springboot(ssm智慧生活商城系统 网上购物系统Java系统 开发语言:Java 框架:ssm/springboot vue JDK版本:JDK1.8(或11) 服务器:tomcat 数据库:mysql 5.7(或8.0) 数…...

Peter算法小课堂—贪心与二分

太戈编程655题 题目描述: 有n辆车大甩卖,第i辆车售价a[i]元。有m个人带着现金来申请购买,第i个到现场的人带的现金为b[i]元,只能买价格不超过其现金额的车子。你是大卖场总经理,希望将车和买家尽量多地进行一对一配对…...

搭建Vue前端项目的流程

1、安装nodejs 测试安装是否成功 $ npm -v 6.14.16 $ node -v v12.22.122、全局安装npm install -g vue/cli,后续会使用到vue命令 $ vue --version vue/cli 5.0.8使用vue create demo_project_fe命令创建项目,使用箭头键来选择,确认使用回车…...

1.使用 Blazor 利用 ASP.NET Core 生成第一个 Web 应用

参考 https://dotnet.microsoft.com/zh-cn/learn/aspnet/blazor-tutorial/create 1.使用vs2022创建新项目 选择 C# -> Windows -> Blzxor Server 应用模板 2.项目名称BlazorApp下一步 3.选择 .NET6.0 或 .NET7.0 或 .NET8.0 创建 4.运行BlazorApp 5.全部选择是。 信…...

如何入门 GPT 并快速跟上当前的大语言模型 LLM 进展?

入门GPT 首先说第一个问题:如何入门GPT模型? 最直接的方式当然是去阅读官方的论文。GPT模型从2018年的GPT-1到现在的GPT-4已经迭代了好几个版本,通过官方团队发表的论文是最能准确理清其发展脉络的途径,其中包括GPT模型本身和一…...

【pentaho】kettle读取Hive表不支持bigint和timstamp类型解决。

一、bigint类型 报错: Unable to get value BigNumber(16) from database resultset显示kettle认为此应该是decimal类型(kettle中是TYPE_BIGNUMBER或称BigNumber),但实际hive数据库中是big类型。 修改kettle源码解决: kettle中java.sql.Types到kettle…...

centos 8 部署nextCloud

参考链接: Example installation on CentOS 8 — Nextcloud latest Administration Manual latest documentation 第一次 在RHEL 9.2部署,部署完成后,上传任意文件提示: 与服务器断开链接 发生未知错误 第二次 计划在centos…...

vue3 element-plus 输入框 clearable属性 聚焦时宽度会变化

解决办法 因为你的代码中el-input是没有宽度的, 所以实际渲染出来的 el-input宽度 原生input宽度 前缀图标宽度 后缀图标宽度。 可以写css固定el-input宽度来处理。 :deep.el-input.el-input--default.el-input--suffix {// 固定宽度width: 200px !important; …...

【科技前沿】数字孪生技术改革智慧供热,换热站3D可视化引领未来

换热站作为供热系统不可或缺的一部分,其能源消耗对城市环保至关重要。在双碳目标下,供热企业可通过搭建智慧供热系统,实现供热方式的低碳、高效、智能化,从而减少碳排放和能源浪费。通过应用物联网、大数据等高新技术,…...

Vue.js 教程

Vue.js(读音 /vjuː/, 类似于 view) 是一套构建用户界面的渐进式框架。 Vue 只关注视图层, 采用自底向上增量开发的设计。 Vue 的目标是通过尽可能简单的 API 实现响应的数据绑定和组合的视图组件。 阅读本教程前,您需要了解的…...

听GPT 讲Rust源代码--src/tools(21)

File: rust/src/tools/miri/src/shims/x86/mod.rs 在Rust的源代码中,rust/src/tools/miri/src/shims/x86/mod.rs文件的作用是为对x86平台的处理提供支持。它包含一些用于模拟硬件操作的shim函数和相关的类型定义。 具体来说,该文件中的函数是通过使用一组…...

OpenCV | 告别人工目检:深度学习技术引领工业品缺陷检测新时代

文章目录 机器视觉缺陷检测工业上常见缺陷检测方法内容简介作者简介目录读者对象如何阅读本书获取方式 机器视觉 机器视觉是使用各种工业相机,结合传感器跟电气信号实现替代传统人工,完成对象识别、计数、测量、缺陷检测、引导定位与抓取等任务。其中工…...

Inkscape SVG 编辑器 导入 Gazebo

概述 本教程描述了拉伸 SVG 文件的过程,这些文件是 2D 的 图像,用于在 Gazebo 中为您的模型创建 3D 网格。有时是 更容易在 Inkscape 或 Illustrator 等程序中设计模型的一部分。 在开始之前,请确保您熟悉模型编辑器。 本教程将向您展示如…...

基于比较的排序算法总结(java实现版)

目录 什么是基于比较的排序算法 什么是排序算法的稳定性 基础排序算法的稳定性 插入排序法 希尔排序法 冒泡排序法 总结 高级算法的稳定性 快速排序法 堆排序法 归并排序法 总结 注意 什么是基于比较的排序算法 基于比较的排序算法定义:之所以能给元素…...

集群与分布式的概念及区别

目前在工作中经常接触到集群的概念,通过这篇文章总结一下集群的几种方式以及和分布式对比学习 1.集群(Cluster) 集群是由多个计算机节点组成的网络,旨在共同提供服务,并确保高性能和高可用性。在高可用集群中&#xf…...

基于ssm+vue的在线听书网站论文

摘 要 传统信息的管理大部分依赖于管理人员的手工登记与管理,然而,随着近些年信息技术的迅猛发展,让许多比较老套的信息管理模式进行了更新迭代,书籍信息因为其管理内容繁杂,管理数量繁多导致手工进行处理不能满足广大…...

hive命令启动出现classnotfound

环境:ambari集群三个节点node104、node105和node106,其中node105上有hiveserver2,并且三个节点均有HIVE CLIENT 注意:“./”指hive安装目录 其中装有hiveserver2的node105节点,由于某种需要向lib目录下上传了某些jar包…...

拥抱数字化转型,共赢数字时代 | 创维汽车商学院走进竹云

数字化浪潮汹涌而来,变革与创新接踵而至。随着数字技术日益融入经济社会发展的各个领域,数字经济与实体经济的“双向奔赴”也不断催生着新产业、新业态、新模式,为经济社会发展持续注入创新活力。12月19日,创维汽车商学院带领嘉宾…...

蓝桥杯:日期问题

目录 引言一、日期问题1.题目描述2.代码实现3.测试 二、回文日期1.题目描述2.代码实现3.测试 引言 关于这个蓝桥杯的日期问题,其实有一个明确的思路就感觉很简单,这个思路就是不用依照日期的顺序去把每一天走完,而是根据一个数加一&#xff…...

vue 简单实现购物车:商品基础信息最终的 html 文件 + 商品计数器的组件处理,实现了购物车;

购物车实现过程: Ⅰ、商品购物车作业需求:1、商品购物车页面示例:2、具体需求: Ⅱ、html 文件的构建:商品购物车.html Ⅲ、组件文件的构建:商品购物车1.js Ⅳ、小结: Ⅰ、商品购物车作业需求&am…...

交叉熵损失(Cross Entropy Loss)学习笔记

在分类任务中,我们通常使用交叉熵作为损失函数,首先给出交叉熵的计算公式: 二分类中: L 1 N ∑ i L i 1 N ∑ i − [ y i l o g ( p i ) ( 1 − y i ) ⋅ l o g ( 1 − p i ) ] \mathcal{L}\frac1{N}\sum_{i}L_i\frac1{N}\sum…...

python flask alchemy在判断None值时与flake8格式检测冲突

python flask alchemy 在判断None值时候,推荐使用/!来判断。例如: query.filter(User.nameNone)query.filter(User.name!None) 但是这样的代码提交后时过不了flake8的语法检查,会报错: flake8...................................…...

海南工程建设资料备案网站/市场调研表模板

转自:http://www.scrumcn.com/agile/scrum-knowledge-library/scrum.html SCRUM 是一个用于开发和维护复杂产品的框架 Scrum 是一个用于开发和维护复杂产品的框架 ,是一个增量的、迭代的开发过程。在这个框架中,整个开发过程由若干个短的迭代…...

wordpress会员充值管理系统/google关键词搜索工具

服务器 1.初始化 WSAStartup(…) 2.创建Socket s Socket ( … ) 3.绑定端口 ret bind ( … ) 4.监听 ret listen ( … ) 5.接收客户端的连接请求 s_new accept ( … ) // 三次握手发生在这个过程 6.收发数据 ret recv ( … ) // 阻塞模式, 内存不够存放发送的…...

互联网网站建设哪里好/全国各城市疫情搜索高峰进度

在科普今天的知识前,不禁让小编回忆起大学校园的美好时光,那个时候小编还是个走在绿树荫下的青涩少年啊,在一次参加关于肿瘤免疫学的学术会议上,看到了类似下面这种图,我就在想,这小鼠是修炼了什么内家功法…...

免费做数据采集的网站/最新新闻

经常回今天说一下substring()方法的特性以及应用。substring() 方法用于提取字符串中介于两个指定下标之间的字符,所以它有两个参数,一个是起始的位置,一个是结束的位置,通俗点说就是针对一段字符串的每个字符的位置截取开始到结束…...

拱墅网站建设制作/seo网站自动发布外链工具

2.2 单页面应用介绍 什么是单页应用?引用百度百科:单页面应用的优缺点:优点:1、用户操作体验好,用户不用刷新页面,整个交互过程都是通过Ajax来操作。 2、适合前后端分离开发,服务端提供http接口…...

京东商城网站建设策划书/网络推广教程

2.3 不合法的常量有:0892;3.8E-3.14 2.4 "Hello!" 长度:6字节 占内存 7字节 ;“ABC\n\\TH\064\?” 长度:9字节 占内存 10字节 注:\n换行符 不占长度 、\\ 转义字符 只取 \、\064 表示64位 取ASC…...