当前位置: 首页 > news >正文

R语言生物群落(生态)数据统计分析与绘图实践技术

R 语言作的开源、自由、免费等特点使其广泛应用于生物群落数据统计分析。生物群落数据多样而复杂,涉及众多统计分析方法。本内容以生物群落数据分析中的最常用的统计方法回归和混合效应模型、多元统计分析技术及结构方程等数量分析方法为主线,通过多个来自经典研究中的实例,详细讲述各方法的R语言实现途径。

主要特点为聚焦生态学研究领域,从R语言基础操作和作图、数据准备整理,到各种数量分析方法的应用情景分析,实现从数据整理到分析结果展示的完整科学研究数据分析过程,将《R语言基础》、《tidyverse数据清洗》、《多元统计分析》、《随机森林模型》、《回归及混合效应模型》、《结构方程模型》及《统计结果作图》进行了组合(7合1)。不仅适合R语言和生物群落(生态)数据统计分析的初学者,同样适合有高阶应用需求的研究生和科研人员。还将通过大量实例讲解,使大家能应对科研工作中复杂数据局面,选择合适模型,提高数据分析能力。

【详情介绍】:

专题一:R和Rstudio简介及入门和作图基础

1) R及Rstudio介绍:背景、软件及程序包安装、基本设置等

2) R语言基本操作,包括向量、矩阵、数据框及数据列表等生成和数据提取等

3) R语言数据文件读取、整理及存储等

4) R语言基础绘图(含ggplot):基本绘图、排版、发表质量绘图输出存储

专题二:R语言数据清洗-tidyverse包应用 

1)tidyvese简介:tidyr、dplyr、readr、%>%

2)文件操作:不同格式文件读取、多文件同时读取等

3)数据筛选:行筛选、列筛选、条件筛选(字符操作)等

4)数据生成:数据合并、数据拆分、新数据生成(字符操作)等

5)长宽数据转换、空值(NA)等填充及删除、分组、排序及汇总等

专题三:群落数据准备及探索分析

1) 生物群落数据准备:物种组成、环境变量、物种功能属性、系统发育树等

2) 生物群落数据检查:缺失值和离群值(outliers)等-避免模型错进错出(GIGO)

3) 物种多样性计算:物种多样性(TD)、功能多样性(FD)和系统发育多样性(PD)

4) 物种相似/相异矩阵关联测度介绍


专题四:群落数据非约束排序-PCA、CA、PCoA、NMDS

1)生物群落数据非约束排序分析简介

2)案例1鱼类生境数据排序PCA

3)案例2鸟类物种组成数据的排序:CA、PCoA和NMDS比较

专题五:群落数据约束排序-RDA、dbRDA、CCA、4th Corner

1) 生物群落数据约束排序简介:非对称约束排序VS对称约束排序

2) 案例1景观、斑块及生境因子蛾类群落分布的解释:RDA、dbRDA或CCA选择+变差分解

3) 案例2物种有无(0,1)数据约束排序:dbRDA

4) 案例3物种组成、物种属性及环境因子的相关分析-第四角分析(4th Corner)

专题群落数据分组分析: 等级/非等级聚类(HC/NHC)、PERMANOVA

1) 生物群落数据的聚类及差异分析概述

2) 案例1鸟类生境数据的等级和非等级聚类:KMEANS和HCLUST

3) 案例2乌龟适宜生境差异检验(2组比较)及解释:PERMANOVA、MRPP、ANOSIM及Dispersion test

4) 案例3环境梯度下微生物组成差异分析(多组比较)及解释:MRPP及Dispersion Test

5)案例4 药物对肠道微生物群落影响:PCoA+PERMANOVA

专题七:群落数据随机森林(Random Forest)模型-分类VS回归

1) 随机森林(Random Forest)模型简介

2) 随机森林模型分析基本流程-分类VS回归

3)案例1 随机森林分类及重要变量选择:RFM-classification

4)案例2 随机森林回归模型及变量重要性评估:RFM-regression

5)案例3 物种多维形态属性与生态属性的关联关系PCA+PCoA+LDA+RFM综合案例

专题八:一般线性模型(lm)

1)基本形式、基本假设、估计方法、参数检验、模型检验

2) 案例1不同鱼类游速的回归、方差及协方差分析

3) 案例2决定海洋植食性鱼类多样性的决定因子-模型验证

4) 案例3淡水鱼丰度的环境因子的筛选-逐步回归(model selection)

专题九:广义线性模型(glm)

1) 广义线性混合效应模型基本原理、建模步骤及流程

2)案例1有无(0,1)数据的逻辑斯蒂模型-二项分布

3)案例2海豹年龄与攻击行为的关系-0,1数据转化为比率数据分析

4)案例3 物种多度分布环境解释-计数数据泊松、负二项、零膨胀、零截断模型

专题十:线性混合效应模型(lmm)

1) 混合效应的基本原理及分析基本流程、步骤及实现

2)案例1分层数据物种多样性决定因素-模型构建流程、模型预测及诊断

3)案例2:多因素实验(分层数据)的多重比较

专题十一:广义线性混合效应模型(glmm)

1)广义线性混合效应模型基本原理、建模步骤及流程

2)案例1蝌蚪“变态”与否(0,1)的多因素分析-逻辑斯蒂混合效应模型

3)案例2虫食种子多度影响因素的多变量分析-泊松混合效应模型 

4)广义线性混合效应模型分析计数数据及模型选择:泊松、伪泊松、负二项、零膨胀泊松、零膨胀负二项、零截断泊松及零截断负二项模型

专题十二:空间、时间及系统发育相关回归-数据自相关(autocorrelation)分析

1) 数据自相关问题简介:时间、空间和系统发育相关介绍

2) 案例1森林植物多样性分布格局的空间自相关修正

3) 案例2不同年份鸟类多度的时间自相关修正

4) 案例3系统发育相关在虾类多度分布分析中作用

专题十三:结构方程模型(SEM):lavaan和piecewiseSEM-多变量直接和间接效应及因果关系

1)结构方程模型简介:定义、历史、应用、估计方法、模型可识别规则及样本量要求等

2)案例1群落物种丰富度恢复的直接及间接效应(direct and indirect effects)SEM分析基本流程-lavaan vs piecwiseSEM

3)案例2环境异质性和资源可获得性对不同演替阶段林下维管植物多样性的影响模型调整、比较、评估及结果展示

4)案例3人类活动、环境条件、物种属性对动物领域大小相对贡献(relative roles)混合模型、嵌套结构、分组分析及分类变量SEM实现

专题十四:群落数据及统计分析结果作图(ggplot)、排版及发表质量图输出

群落数据及统计分析结果作图数据准备:结果提取与作图数据整理

聚类分析及分组差异检验图:聚类结果图、热图(heatmap)、分组差异检验结果图

PCA、CA、PCoA及NMDS等非约束排序图:排序图和双序图(biplot)

RDA、db-RDA及CCA等约束排序图:三序图(triplot)和韦恩图(venn)

回归和混合效应模型分析结果图:散点图、箱线图、柱状图及提琴图等

结构方程模型结果图表达方式

相关文章:

R语言生物群落(生态)数据统计分析与绘图实践技术

R 语言作的开源、自由、免费等特点使其广泛应用于生物群落数据统计分析。生物群落数据多样而复杂,涉及众多统计分析方法。本内容以生物群落数据分析中的最常用的统计方法回归和混合效应模型、多元统计分析技术及结构方程等数量分析方法为主线,通过多个来…...

c# OpenCV 检测(斑点检测、边缘检测、轮廓检测)(五)

在C#中使用OpenCV进行图像处理时,可以使用不同的算法和函数来实现斑点检测、边缘检测和轮廓检测。 斑点检测边缘检测轮廓检测 一、斑点检测(Blob) 斑点检测是指在图像中找到明亮或暗的小区域(通常表示为斑点)&#…...

PHP下载安装以及基本配置

目录 引言 官网 下载 配置 1. 鼠标右键“此电脑”>“属性” 2. 打开高级系统设置 3. 打开环境变量 4. 双击系统变量中的path 5. 新建新的path 6. 将刚刚安装的位置加入环境变量 7. 检查是否安装成功 引言 PHP("PHP: Hypertext Preprocessor"…...

黑苹果安装经验总结2023-12

最近2个月安装了3台黑苹果 B85,I3-4330,HD7750,最容易安装,MacOS12一次成功山寨X99,E5-2650V4,RX470,难度高惠普Z840,X99平台,2颗E5-2630,128G内存&#xff…...

基于深度学习的森林火焰烟雾检测系统(含UI界面,yolov8、Python代码,数据集)

项目介绍 项目中所用到的算法模型和数据集等信息如下: 算法模型:     yolov8 yolov8主要包含以下几种创新:         1. 添加注意力机制(SE、CBAM等)         2. 修改可变形卷积(DySnake-主干c…...

测试开发体系介绍——测试体系介绍-L1

目录: 软件测试基础概念 软件测试:软件测试作用:软件缺陷:软件测试原则:软件测试对象:测试用例软件开发流程 软件:软件生命周期:软件开发流程:瀑布模型:瀑布模型优缺点敏捷开发模型: XP - 极限编程:SCRUM:DevOps:DevOps 生命周期:DevOps 对发…...

Linux中的链接运算符详解 - 提高编程效率与性能

Linux 命令的链接意味着,组合多个命令并根据它们之间使用的操作符的行为使它们执行。 Linux 中的命令链就像您在 shell 本身编写简短的 shell 脚本,然后直接从终端执行它们。链接使得流程自动化成为可能。 此外,无人值守的机器可以在链接操作…...

JS模块化规范之ES6及UMD

JS模块化规范之ES6及总结 前言ES6模块化概念基本使用ES6实现 UMD(Universal Module Definition)总结 前言 ESM在模块之间的依赖关系是高度确定的,与运行状态无关,编译工具只需要对ESM模块做静态分析,就可以从代码字面中推断出哪些模块值未曾被…...

XM平台官网开户注册流程图解

注册前准备 在进行XM外汇官网注册之前,首先需要准备必要的信息,包括个人身份信息、联系方式以及相关财务信息。确保这些信息的准确性是保证注册流程顺利进行的关键。 一、要访问XM外汇官方网站,首先打开您的浏览器。在浏览器的地址栏中输入…...

【Linux进阶之路】线程

文章目录 一、初始线程1.概念2.执行3.调度4.切换 二、线程控制1.创建2.等待3.分离4.退出5.取消 三、线程安全1.互斥1.1初始1.2理解1.3锁1.3.1概念1.3.2原理1.3.4死锁 2.同步2.1概念2.2原理 3.生产消费者模型 总结尾序 一、初始线程 1.概念 简单的概念: 线程就是一…...

个性化TikTok外贸工具定制!突破营销新境界!

随着全球化的加速发展,外贸行业正面临着前所未有的机遇和挑战,在这个竞争激烈的市场环境中,如何脱颖而出,吸引更多的潜在客户,成为每个外贸企业亟待解决的问题,而个性化TikTok外贸工具的定制,正…...

设计模式-门面模式

设计模式专栏 模式介绍模式特点应用场景门面模式和代理模式的区别代码示例Java实现门面模式Python实现门面模式 门面模式在spring中的应用 模式介绍 门面模式是一种常用的软件设计模式,也称为外观模式。它提供了一个高层次的接口,将一个子系统的外部与内…...

搭建接口自动化测试框架python+requests+pytest

安装python(最好是比较新比较稳定的版本),然后是python的解释器或者叫编译器pycharm安装后新建一个项目,以此项目为基础,安装依赖搭建框架。打开pycharm,点击左上角的File->New project->弹出如下界面…...

一套rk3588 rtsp服务器推流的 github 方案及记录 -02

整体方案参考上一篇博文 https://blog.csdn.net/qq_31764341/article/details/134810566 本篇博文主要介绍基于RK3588进行硬解码 还是之前的套路,我不生产代码,我只是代码的搬运工,今天我们搬运瑞芯微的官方代码,并记录下来整个调…...

docker运行java程序的Dockerfile

1&#xff0c;docker运行java程序的Dockerfile # 使用基础镜像 FROM alpine:latest # 暴露容器的端口 不会自动将容器的端口映射到宿主机上 docker run -d -p <宿主机端口>:7080 <镜像名称> EXPOSE 9202 EXPOSE 19202 #下载jdk8 RUN apk update && apk a…...

docker数据卷数据卷容器

前言 今天调休在家&#xff0c;随便玩玩&#xff0c;简单做下学习记录 1. 数据卷特点 数据卷在容器启动时初始化&#xff0c;如果容器使用的镜像在挂载点包含了数据&#xff0c;这些数据会被拷贝到新初始化的数据卷中数据卷可以在容器之间共享和重用可以对数据卷里的内容直接…...

使用HTTP协议有哪些风险?HTTP与HTTPS的区别是什么

作为两种常见的网络协议&#xff0c;HTTP和HTTPS都是用于在浏览器和服务器之间传输数据的。然而在保障数据安全性方面&#xff0c;HTTPS远远优于HTTP。在网络安全愈发重要的当下&#xff0c;HTTP协议的不安全性使得其逐渐被淘汰弃用。那么使用HTTP协议有哪些风险呢&#xff1f;…...

【jvm从入门到实战】(十) 实战篇-内存调优

内存溢出和内存泄漏&#xff1a;在Java中如果不再使用一个对象&#xff0c;但是该对象依然在GC ROOT的引用链上&#xff0c;这个对象就不会被垃圾回收器回收&#xff0c;这种情况就称之为内存泄漏。内存泄漏绝大多数情况都是由堆内存泄漏引起的。少量的内存泄漏可以容忍&#x…...

设计模式分类

不同设计模式的复杂程度、 细节层次以及在整个系统中的应用范围等方面各不相同。 我喜欢将其类比于道路的建造&#xff1a; 如果你希望让十字路口更加安全&#xff0c; 那么可以安装一些交通信号灯&#xff0c; 或者修建包含行人地下通道在内的多层互通式立交桥。 最基础的、 底…...

【前缀和】【单调栈】LeetCode2281:巫师的总力量和

作者推荐 map|动态规划|单调栈|LeetCode975:奇偶跳 涉及知识点 单调栈 C算法&#xff1a;前缀和、前缀乘积、前缀异或的原理、源码及测试用例 包括课程视频 题目 作为国王的统治者&#xff0c;你有一支巫师军队听你指挥。 给你一个下标从 0 开始的整数数组 strength &…...

力扣面试经典题之二叉树

104. 二叉树的最大深度 简单 给定一个二叉树 root &#xff0c;返回其最大深度。 二叉树的 最大深度 是指从根节点到最远叶子节点的最长路径上的节点数。 示例 1&#xff1a; 输入&#xff1a;root [3,9,20,null,null,15,7] 输出&#xff1a;3示例 2&#xff1a; 输入&#xf…...

图灵日记之java奇妙历险记--数据类型与变量运算符

目录 数据类型与变量字面常量数据类型变量语法格式整型变量浮点型变量字符型变量希尔型变量类型转换自动类型转换(隐式)强制类型转换(显式) 类型提升不同数据类型的运算小于4字节数据类型的运算 字符串类型 运算符算术运算符关系运算符逻辑运算符逻辑与&&逻辑或||逻辑非…...

PhysX——源码编译

从git下载源码 git主页 https://github.com/NVIDIA-Omniverse/PhysXclone地址 https://github.com/NVIDIA-Omniverse/PhysX.git源码编译 运行PhysX需要两个编译器的支持&#xff0c;CMake 3.12 或以上版本以及Python 2.7.6 版本 进入工程的 physx 目录&#xff0c;运行generate…...

小鹅通基于 TSE 云原生 API 网关的落地实践

导语 2023腾讯全球数字生态大会已于9月7-8日完美落幕&#xff0c;40专场活动展示了腾讯最新的前沿技术、核心产品、解决方案。 微服务与消息队列专场&#xff0c;我们邀请到了小鹅通的基础架构组负责人黄徐震为我们带来了《小鹅通基于 TSE 云原生网关的落地实践》的精彩演讲。…...

Postgresql处理JSON类型中替换某个属性值问题

一、问题描述 使用postgresql对json的特性使用sql批量处理json中某个属性的值 结构如下&#xff1a; {"id": 1,"parentId": 123,"globalParameters": [{"value": "date","boardId": 123,"canReName":…...

@德人合科技——天锐绿盾 | 图纸加密软件有哪些功能呢?

德人合科技 | 天锐绿盾加密软件是一款全面保障企业电脑数据和安全使用的加密软件 PC端访问地址&#xff1a;www.drhchina.com 它的功能包括但不限于&#xff1a; 实时操作日志&#xff1a;可以实时详细地记录所有终端的操作日志&#xff0c;包括终端上窗口标题的变换、程序的…...

android 使用GSON 序列化对象出现字段被优化问题解决方案

一、问题描述 有以下结构&#xff1a; public class NativeParam<T> {private T data;public NativeParam(T data) {this.data data;}public T getData() {return data;}public void setData(T data) {this.data data;} };NativeParam<String> data "1.0…...

进入不了Bios?进入Bios的方法都在这了,肯定能进!

前言 有些小伙伴可能在重装系统的第一步就卡住了&#xff0c;接着就放弃了。哇哈哈哈啊&#xff0c;先让小白笑会&#xff5e; 根据小白十二年的装机经验&#xff0c;不同主板进入Bios的时候有不同的姿势。也许要蹲着大喊Bios才能进入呢&#xff1f;要不试试&#xff1f; 好了…...

手把手教你基于 FastGPT 搭建个人知识库

前言 大家好&#xff0c;我是潇潇雨声。我发现在使用 GPT 时&#xff0c;尽管它能够生成一些小红书文案和日志&#xff0c;但内容常常显得空洞缺乏深度。今天我想分享一个解决这个问题的方法&#xff0c;那就是基于开源项目 FastGPT[1]。 我们可以通过向 GPT 提供一些有针对性的…...

gitee 怎么添加SSH密钥

要在Gitee上添加SSH密钥&#xff0c;请按照以下步骤操作&#xff1a; 登录到Gitee账户并导航到您要添加SSH密钥的存储库页面。点击页面右上方的“设置”按钮。在设置页面中&#xff0c;选择“SSH公钥”选项卡。点击“添加密钥”按钮。在弹出的对话框中&#xff0c;输入密钥标题…...

杭州企业网站建设公司/互联网宣传方式有哪些

query DSL match 查询 { "match": { "tweet": "About Search" } } 注&#xff1a;match查询只能就指定某个确切字段某个确切的值进行搜索&#xff0c;做精确匹配搜索时&#xff0c; 你最好用过滤语句&#xff0c;因为过滤语句可以缓存数据。mat…...

做一钓鱼网站吗/谷歌浏览器下载手机版最新版

GBase 8c Platform提供集群管理功能&#xff0c;可便捷高效地实现数据库集群的部署、外部导入、启停、同步设置、备份、恢复、扩缩容等操作。用户可以创建新集群、导入外部集群&#xff0c;还具有丰富的集群管理功能。 界面默认显示已部署的数据库集群配置信息。通用管理平台对…...

临沂网站建设制作/网络营销推广方案策划书

[20191227]别把数据库当作垃圾场.txt--//最近一直在我一个项目的优化工作,看到开发写的模式有时候真心无语!!xxxxx> select count(*) from BBB_QQQQ_FFFFF_TTTTTT;COUNT(*)----------1xxxxx> select count(*) from BBB_QQQQ_FFFFF_TTTTTT;COUNT(*)----------0--//可以发现…...

学做网站必须php吗/软文推广发布

开发环境&#xff1a;系统环境&#xff1a;龙芯1B开发板(mips32指令)、Linux 3.0.0内核编译环境&#xff1a;Ubuntu 10.04 ,gcc-3.4.6-2f本文要用到的相关文件(cramfs-1.1.tar.gz、yaffs2-d43e901.tar.gz、mtd-utils-1.0.0.tar.gz)下载&#xff1a;用户名与密码都是www.linuxid…...

免费开商城网站/许昌网络推广外包

1.dockerToolBox下载 下载路径1:http://mirrors.aliyun.com/docker-toolbox/windows/docker-toolbox/下载路径2: https://docs.docker.com/toolbox/toolbox_install_windows/1.Docker溯源Docker的前身是名为dotCloud的小公司&#xff0c;主要提供的是基于 PaaS&#xff08;Plat…...

上海网站se0优化/营销类网站

作者 | Tina & Jenny专栏 | 九章算法 到了职业发展的中后期&#xff0c; 程序员多将面临一个艰难的抉择&#xff1a; 是继续从事编程开发走的技术路线&#xff0c; 还是转为管理层面的发展路线&#xff1f; 开发人员的职业发展能否避开向管理层面的转变&#xff1f; 这是一…...