当前位置: 首页 > news >正文

智能优化算法应用:基于卷尾猴算法3D无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用:基于卷尾猴算法3D无线传感器网络(WSN)覆盖优化 - 附代码

文章目录

  • 智能优化算法应用:基于卷尾猴算法3D无线传感器网络(WSN)覆盖优化 - 附代码
    • 1.无线传感网络节点模型
    • 2.覆盖数学模型及分析
    • 3.卷尾猴算法
    • 4.实验参数设定
    • 5.算法结果
    • 6.参考文献
    • 7.MATLAB代码

摘要:本文主要介绍如何用卷尾猴算法进行3D无线传感器网(WSN)覆盖优化。

1.无线传感网络节点模型

本文主要基于0/1模型,进行寻优。在二维平面上传感器节点的感知范围是一个以节点为圆心,半径为 R n R_n Rn的圆形区域,该圆形区域通常被称为该节点的“感知圆盘”, R n R_n Rn称为传感器节点的感知半径,感知半径与节点内置传感器件的物理特性有关,假设节点 n n n的位置坐标为 ( x n , y n , z n ) (x_n,y_n,z_n) (xn,yn,zn)在0-1感知模型中,对于平面上任意一点 p ( x p , y p , z p ) p(x_p,y_p,z_p) p(xp,yp,zp),则节点 n n n监测到区域内点 p p p的事件发生概率为:
P r ( n , p ) = { 1 , d ( n , p ) ≤ R n 0 , e s l e (1) P_r(n,p)=\begin{cases}1, \,d(n,p)\leq R_n\\ 0,\, esle \end{cases}\tag{1} Pr(n,p)={1,d(n,p)Rn0,esle(1)
其中 d ( n , p ) = ( x n − x p ) 2 + ( y n − y p ) 2 + ( z n − z p ) 2 d(n,p)=\sqrt{(x_n-x_p)^2+(y_n-y_p)^2 + (z_n-z_p)^2} d(n,p)=(xnxp)2+(ynyp)2+(znzp)2 为点和之间的欧式距离。

2.覆盖数学模型及分析

现假定目标监测区域为二维平面,在区域 A r e a Area Area上投放同型结构传感器节点的数目为N,每个节点的位置坐标值假设已被初始化赋值,且节点的感知半径r。传感器节点集则表示为:
N o d e { x 1 , . . . , x N } (2) Node\{x_1,...,x_N\} \tag{2} Node{x1,...,xN}(2)
其中 n o d e i = { x i , y i , z i , r } node_i=\{x_i,y_i,z_i,r\} nodei={xi,yi,zi,r},表示以节点 ( x i , y i , z i ) (x_i,y_i,z_i) (xi,yi,zi)为圆心,r为监测半径的球,假定监测区域 A r e a Area Area被数字化离散为 m ∗ n ∗ l m*n*l mnl个空间点,空间点的坐标为 ( x , y , z ) (x,y,z) (x,y,z),目标点与传感器节点间的距离为:
d ( n o d e i , p ) = ( x i − x ) 2 + ( y i − y ) 2 + ( z i − z ) 2 (3) d(node_i,p)=\sqrt{(x_i-x)^2+(y_i-y)^2 + (z_i-z)^2}\tag{3} d(nodei,p)=(xix)2+(yiy)2+(ziz)2 (3)
目标区域内点被传感器节点所覆盖的事件定义为 c i c_i ci。则该事件发生的概率 P c i P{c_i} Pci即为点 ( x , y , z ) (x,y,z) (x,y,z)被传感器节点 n o d e i node_i nodei所覆盖的概率:
P c o v ( x , y , z , n o d e i ) = { 1 , i f d ( n o d e i , p ) ≤ r 0 , e s l e (4) P_{cov}(x,y,z,node_i)=\begin{cases}1, if\,d(node_i,p)\leq r\\ 0,\, esle \end{cases}\tag{4} Pcov(x,y,z,nodei)={1,ifd(nodei,p)r0,esle(4)
我们将所有的传感器节点在目标监测环境中的区域覆盖率 C o v e r R a t i o CoverRatio CoverRatio定义为传感器节点集的覆盖面积与监测区域的面积之比,如公式所示:
C o v e r R a t i o = ∑ P c o v m ∗ n ∗ l (5) CoverRatio = \frac{\sum P_{cov}}{m*n*l}\tag{5} CoverRatio=mnlPcov(5)
那我们的最终目标就是找到一组节点使得覆盖率最大。

3.卷尾猴算法

卷尾猴算法原理请参考:https://blog.csdn.net/u011835903/article/details/123328669
卷尾猴算法是寻找最小值。于是适应度函数定义为未覆盖率最小,即覆盖率最大。如下:
f u n = a r g m i n ( 1 − C o v e r R a t i o ) = a r g m i n ( 1 − ∑ P c o v m ∗ n ∗ l ) (6) fun = argmin(1 - CoverRatio) = argmin(1-\frac{\sum P_{cov}}{m*n*l}) \tag{6} fun=argmin(1CoverRatio)=argmin(1mnlPcov)(6)

4.实验参数设定

无线传感器覆盖参数设定如下:

%% 设定WNS覆盖参数,
%% 默认输入参数都是整数,如果想定义小数,请自行乘以系数变为整数再做转换。
%% 比如范围1*1,R=0.03可以转换为100*100,R=3;
%区域范围为AreaX*AreaY*AreaZ
AreaX = 100;
AreaY = 100;
AreaZ = 100;
N = 20 ;%覆盖节点数
R = 15;%通信半径

卷尾猴算法参数如下:

%% 设定卷尾猴优化参数
pop=30; % 种群数量
Max_iteration=30; %设定最大迭代次数
lb = ones(1,3*N);
ub = [AreaX.*ones(1,N),AreaY.*ones(1,N),AreaZ.*ones(1,N)];
dim = 3*N;%维度为3N,N个坐标点

5.算法结果

在这里插入图片描述
在这里插入图片描述

从结果来看,覆盖率在优化过程中不断上升。表明卷尾猴算法对覆盖优化起到了优化的作用。

6.参考文献

[1] 史朝亚. 基于PSO算法无线传感器网络覆盖优化的研究[D]. 南京理工大学.

7.MATLAB代码

相关文章:

智能优化算法应用:基于卷尾猴算法3D无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用:基于卷尾猴算法3D无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用:基于卷尾猴算法3D无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.卷尾猴算法4.实验参数设定5.算法结果6.参考文…...

前端传输formDate格式的数据,后端不能用@RequestBody接收

写了个接口,跟前端对接,前端说怎么一直415的报错 我寻思不对啊,我swagger都请求成功了,后来发现前端一直是以formdata格式提交的数据,这样我其实是可以不加RequestBody的; 知识点: RequestBody…...

【AivaAI】做音乐,无人能比它更专业

关于Aiva Aiva AIVA是音乐制作初创公司AIVA Technologies打造的一款人工智能产品。是人工智能领域头款获得国际认证的虚拟作曲家。 Aiva登录 可以选择Google登录,或者其他邮箱登录。 输入用户名,登录完成。 开始制作音乐 在主页选择“创建曲目…...

嵌入式开发网络配置——windows连热点,开发板和电脑网线直连

目录 电脑 WiFi 上网,开发板和电脑直连 使用场景 设置VMware虚拟机的网络配置 Ubuntu设置——版本18.04 ​编辑 windows设置 开发板设置 原因:虚拟机Linux移植可执行程序到开发板失败 最后发现虚拟机的Linuxping不通开发板 下面是我的解决方法 …...

基于Netty构建Websocket服务端

除了构建TCP和UDP服务器和客户端,Netty还可以用于构建WebSocket服务器。WebSocket是一种基于TCP协议的双向通信协议,可以在Web浏览器和Web服务器之间建立实时通信通道。下面是一个简单的示例,演示如何使用Netty构建一个WebSocket服务器。 项目…...

基于Rocket MQ扩展的无限延迟消息队列

基于Rocket MQ扩展的无限延迟消息队列 背景: Rocket MQ支持的延迟队列时间是固定间隔的, 默认19个等级(包含0等级): 0s, 1s, 5s, 10s, 30s, 1m, 2m, 3m, 4m, 5m, 6m, 7m, 8m, 9m, 10m, 20m, 30m, 1h. 我们的需求是实现用户下单后48小时或72小时给用户发送逼单邮件. 使用默认的…...

Python办公自动化 – 日志分析和自动化FTP操作

Python办公自动化 – 日志分析和自动化FTP操作 以下是往期的文章目录,需要可以查看哦。 Python办公自动化 – Excel和Word的操作运用 Python办公自动化 – Python发送电子邮件和Outlook的集成 Python办公自动化 – 对PDF文档和PPT文档的处理 Python办公自动化 – 对…...

MyBatis 关联查询

目录 一、一对一查询(sqlMapper配置文件) 1、需求: 2、创建account和user实体类 3、创建AccountMapper 接口 4、创建并配置AccountMapper.xml 5、测试 二、一对多查询(sqlMapper配置文件) 1、需求:…...

NVIDIA NCCL 源码学习(十二)- double binary tree

上节我们以ring allreduce为例看到了集合通信的过程,但是随着训练任务中使用的gpu个数的扩展,ring allreduce的延迟会线性增长,为了解决这个问题,NCCL引入了tree算法,即double binary tree。 double binary tree 朴素…...

.net core webapi 大文件上传到wwwroot文件夹

1.配置staticfiles(program文件中) app.UseStaticFiles();2.在wwwroot下创建upload文件夹 3.返回结果封装 namespace webapi;/// <summary> /// 统一数据响应格式 /// </summary> public class Results<T> {/// <summary>/// 自定义的响应码&#xff…...

C++设计模式 #3策略模式(Strategy Method)

动机 在软件构建过程中&#xff0c;某些对象使用的的算法可能多种多样&#xff0c;经常改变。如果将这些算法都写在类中&#xff0c;会使得类变得异常复杂&#xff1b;而且有时候支持不频繁使用的算法也是性能负担。 如何在运行时根据需求透明地更改对象的算法&#xff1f;将…...

金融知识——OMS、EMS和PMS分别是什么意思

金融知识——OMS、EMS和PMS分别是什么意思 OMSEMSPMS OMS OMS&#xff08;Order Management System&#xff09;是为了管理头寸&#xff0c;以多种方式创建订单&#xff0c;并进行订单屈从检验以使得用户在订单创建时收到一些约束。在交易管理方面&#xff0c;OMS提供交易组合…...

Docker——微服务的部署

Docker——微服务的部署 文章目录 Docker——微服务的部署初识DockerDocker与虚拟机Docker架构安装DockerCentOS安装Docker卸载&#xff08;可选&#xff09;安装docker启动docker配置镜像加速 Docker的基本操作Docker的基本操作——镜像Docker基本操作——容器Docker基本操作—…...

AI时代架构设计新模式

云原生架构原则 云原生架构本身作为一种架构&#xff0c;也有若干架构原则作为应用架构的核心架构控制面&#xff0c;通过遵从这些架构原则可以让技术主管和架构师在做技术选择时不会出现大的偏差。 服务化原则 当代码规模超出小团队的合作范围时&#xff0c;就有必要进行服务…...

速盾网络:高防IP的好处

随着互联网的快速发展&#xff0c;网络安全问题日益突出&#xff0c;越来越多的企业和个人开始关注网络安全防护。其中&#xff0c;高防IP作为一种高效的防御手段&#xff0c;越来越受到用户的青睐。本文将介绍速盾网络高防IP的好处&#xff0c;帮助您了解其优势和应用场景。一…...

创建Maven Web工程

目录下也会有对应的生命周期。其中常用的是&#xff1a;clean、compile、package、install。 比如这里install &#xff0c;如果其他项目需要将这里的模块作为依赖使用&#xff0c;那就可以 install 。安装到本地仓库的位置&#xff1a; Java的Web工程&#xff0c;所以我们要选…...

【PHP入门】2.2 流程控制

-流程控制- 流程控制&#xff1a;代码执行的方向 2.2.1控制分类 顺序结构&#xff1a;代码从上往下&#xff0c;顺序执行。&#xff08;代码执行的最基本结构&#xff09; 分支结构&#xff1a;给定一个条件&#xff0c;同时有多种可执行代码&#xff08;块&#xff09;&am…...

springCould中的zookeeper-从小白开始【3】

目录 1.启动zookeeper❤️❤️❤️ 2.创建8004模块 ❤️❤️❤️ 3.临时节点还是永久节点❤️❤️❤️ 4.创建zk80消费模块❤️❤️❤️ 1.启动zookeeper❤️❤️❤️ 进入自己zookeeper的bin目录下 分别使用命令&#xff1a; ./zkServer.sh start 和 ./zkCli.sh -serve…...

Node.js-模块化(二)

1. 模块化的基本概念 1.1 什么是模块化 模块化是指解决一个复杂问题时&#xff0c;自顶向下逐层将系统拆分成若干模块的过程。对于整个系统来说&#xff0c;模块是可组合、分解和更换的单元。 1.2 编程领域中的模块化 编程领域中的模块化&#xff0c;就是遵守固定的规则&…...

MAC 安装nginx

使用Homebrew方式进行安装 步骤&#xff1a; 1、更新 Homebrew brew update 2、下载并安装 Nginx brew install nginx 3、查看 nginx 配置信息 brew info nginx zhanghuaBreeze ~ % brew info nginx // 版本信息 > nginx: stable 1.25.1 (bottled), HEAD HTTP(S) se…...

UE5 学习系列(三)创建和移动物体

这篇博客是该系列的第三篇&#xff0c;是在之前两篇博客的基础上展开&#xff0c;主要介绍如何在操作界面中创建和拖动物体&#xff0c;这篇博客跟随的视频链接如下&#xff1a; B 站视频&#xff1a;s03-创建和移动物体 如果你不打算开之前的博客并且对UE5 比较熟的话按照以…...

鸿蒙DevEco Studio HarmonyOS 5跑酷小游戏实现指南

1. 项目概述 本跑酷小游戏基于鸿蒙HarmonyOS 5开发&#xff0c;使用DevEco Studio作为开发工具&#xff0c;采用Java语言实现&#xff0c;包含角色控制、障碍物生成和分数计算系统。 2. 项目结构 /src/main/java/com/example/runner/├── MainAbilitySlice.java // 主界…...

学校时钟系统,标准考场时钟系统,AI亮相2025高考,赛思时钟系统为教育公平筑起“精准防线”

2025年#高考 将在近日拉开帷幕&#xff0c;#AI 监考一度冲上热搜。当AI深度融入高考&#xff0c;#时间同步 不再是辅助功能&#xff0c;而是决定AI监考系统成败的“生命线”。 AI亮相2025高考&#xff0c;40种异常行为0.5秒精准识别 2025年高考即将拉开帷幕&#xff0c;江西、…...

无人机侦测与反制技术的进展与应用

国家电网无人机侦测与反制技术的进展与应用 引言 随着无人机&#xff08;无人驾驶飞行器&#xff0c;UAV&#xff09;技术的快速发展&#xff0c;其在商业、娱乐和军事领域的广泛应用带来了新的安全挑战。特别是对于关键基础设施如电力系统&#xff0c;无人机的“黑飞”&…...

【JVM面试篇】高频八股汇总——类加载和类加载器

目录 1. 讲一下类加载过程&#xff1f; 2. Java创建对象的过程&#xff1f; 3. 对象的生命周期&#xff1f; 4. 类加载器有哪些&#xff1f; 5. 双亲委派模型的作用&#xff08;好处&#xff09;&#xff1f; 6. 讲一下类的加载和双亲委派原则&#xff1f; 7. 双亲委派模…...

日常一水C

多态 言简意赅&#xff1a;就是一个对象面对同一事件时做出的不同反应 而之前的继承中说过&#xff0c;当子类和父类的函数名相同时&#xff0c;会隐藏父类的同名函数转而调用子类的同名函数&#xff0c;如果要调用父类的同名函数&#xff0c;那么就需要对父类进行引用&#…...

《Docker》架构

文章目录 架构模式单机架构应用数据分离架构应用服务器集群架构读写分离/主从分离架构冷热分离架构垂直分库架构微服务架构容器编排架构什么是容器&#xff0c;docker&#xff0c;镜像&#xff0c;k8s 架构模式 单机架构 单机架构其实就是应用服务器和单机服务器都部署在同一…...

轻量级Docker管理工具Docker Switchboard

简介 什么是 Docker Switchboard &#xff1f; Docker Switchboard 是一个轻量级的 Web 应用程序&#xff0c;用于管理 Docker 容器。它提供了一个干净、用户友好的界面来启动、停止和监控主机上运行的容器&#xff0c;使其成为本地开发、家庭实验室或小型服务器设置的理想选择…...

高抗扰度汽车光耦合器的特性

晶台光电推出的125℃光耦合器系列产品&#xff08;包括KL357NU、KL3H7U和KL817U&#xff09;&#xff0c;专为高温环境下的汽车应用设计&#xff0c;具备以下核心优势和技术特点&#xff1a; 一、技术特性分析 高温稳定性 采用先进的LED技术和优化的IC设计&#xff0c;确保在…...

EasyRTC音视频实时通话功能在WebRTC与智能硬件整合中的应用与优势

一、WebRTC与智能硬件整合趋势​ 随着物联网和实时通信需求的爆发式增长&#xff0c;WebRTC作为开源实时通信技术&#xff0c;为浏览器与移动应用提供免插件的音视频通信能力&#xff0c;在智能硬件领域的融合应用已成必然趋势。智能硬件不再局限于单一功能&#xff0c;对实时…...