【优质书籍推荐】LoRA微调的技巧和方法
大家好,我是爱编程的喵喵。双985硕士毕业,现担任全栈工程师一职,热衷于将数据思维应用到工作与生活中。从事机器学习以及相关的前后端开发工作。曾在阿里云、科大讯飞、CCF等比赛获得多次Top名次。现为CSDN博客专家、人工智能领域优质创作者。喜欢通过博客创作的方式对所学的知识进行总结与归纳,不仅形成深入且独到的理解,而且能够帮助新手快速入门。今天给大家带来的文章是LoRA微调的技巧和方法,希望能对同学们有所帮助。
文章目录
- 1. 定义
- 2. LoRA微调参数
- 3. 书籍推荐
- 3.1 《从零开始大模型开发与微调:基于PyTorch与ChatGLM》
- 3.2 内容介绍
- 3.3 适合人群
- 3.4 粉丝福利
- 3.5 自主购买
1. 定义
对于大语言模型而言,全量微调的代价是比较高的,需要数百GB的显存来训练具有几B参数的模型。为了解决资源不足的问题,大佬们提出了一种新的方法:低秩适应(Low-Rank Adaptation)。与微调OPT-175B相比,LoRA可以将可训练参数数量减少一万倍,并且GPU显存降低3倍以上。详细内容可参考论文《LoRA: Low-Rank Adaptation of Large Language Models》和HuggingFace PEFT博客文章《Parameter-Efficient Fine-Tuning of Billion-Scale Models on Low-Resource Hardware》。

LoRA是一种常用的高效微调的训练方法(PEFT),旨在加快大型语言模型的训练过程,同时减少显存的使用。通过引入更新矩阵对现有权重进行操作,LoRA专注于训练新添加的权重。LoRA方法具有以下的几大优点:
- 保留预训练权重:LoRA保持先前训练权重的冻结状态,最小化了灾难性遗忘的风险。这确保了模型在适应新数据时保留其现有知识。
- 已训练权重的可移植性:与原始模型相比,LoRA中使用的秩分解矩阵参数明显较少。这个特点使得经过训练的LoRA权重可以轻松地转移到其他环境中,使它们非常易于移植。
- 与注意力层集成:通常将LoRA矩阵合并到原始模型的注意力层中。此外,自适应缩放参数允许控制模型对新培训数据调整程度。
- 显存效率:LoRA改进后具有更高效利用显存资源能力,在不到本机微调所需计算量3倍情况下运行微调任务成为可能。
对于普通用户来说,依然很难满足1/3的显存需求。幸运的是,大佬们又发明了一种新的LoRA训练方法:量化低秩适应(QLoRA)。它利用bitsandbytes库对语言模型进行即时和近无损量化,并将其应用于LoRA训练过程中。这导致显存需求急剧下降,可以在2个3090卡上微调70B的模型。相比之下,要微调同等规模的模型通常需要超过16个A100-80GB GPU,对应的成本将非常巨大。详细内容可参考论文QLoRA: Efficient Finetuning of Quantized LLMs。

2. LoRA微调参数
首先最关键的参数为:低秩矩阵对应的秩(rank)。为了减少显存,对权重矩阵应用了低秩分解。在LoRA论文中,建议rank设置不小于8(r = 8)。请记住,较高的rank会导致更好的结果,但需要更多的显存。数据集的数量和复杂度越高,所需的rank就越高。
除此之外,另外需要设置的参数即为LoRA微调对应的网络层。最基本的训练对象是查询向量(例如q_proj)和值向量(例如v_proj)投影矩阵。不同模型对应的网络层如下所示:
| Model | Model size | Default module |
|---|---|---|
| Baichuan | 7B/13B | W_packbaichuan |
| Baichuan2 | 27B/13B | W_packbaichuan2 |
| BLOOM | 560M/1.1B/1.7B/3B/7.1B/176B | query_key_value |
| BLOOMZ | 560M/1.1B/1.7B/3B/7.1B/176B | query_key_value |
| ChatGLM | 36B | query_key_value |
| Falcon | 7B/40B/180B | query_key_value |
| InternLM | 7B/20B | q_proj,v_proj |
| LLaMA | 7B/13B/33B/65B | q_proj,v_proj |
| LLaMA-2 | 7B/13B/70B | q_proj,v_proj |
| Mistral | 7B | q_proj,v_proj |
| Mixtral | 8x7B | q_proj,v_proj |
| Phi | 1.5/21.3B/2.7B | Wqkv-Q |
| Qwen | 1.8B/7B/14B/72B | c_attn |
| XVERSE | 7B/13B/65B | q_proj,v_proj |
| Yi | 6B/34B | q_proj,v_proj |
3. 书籍推荐
大模型是深度学习自然语言处理皇冠上的一颗明珠,也是当前AI和NLP研究与产业中最重要的方向之一。本书使用PyTorch 2.0作为学习大模型的基本框架,以ChatGLM为例详细讲解大模型的基本理论、算法、程序实现、应用实战以及微调技术,为读者揭示大模型开发技术。
3.1 《从零开始大模型开发与微调:基于PyTorch与ChatGLM》

3.2 内容介绍
大模型是深度学习自然语言处理皇冠上的一颗明珠,也是当前AI和NLP研究与产业中最重要的方向之一。本书使用PyTorch 2.0作为学习大模型的基本框架,以ChatGLM为例详细讲解大模型的基本理论、算法、程序实现、应用实战以及微调技术,为读者揭示大模型开发技术。本书配套示例源代码、PPT课件。
《从零开始大模型开发与微调:基于PyTorch与ChatGLM》共18章,内容包括人工智能与大模型、PyTorch 2.0深度学习环境搭建、从零开始学习PyTorch 2.0、深度学习基础算法详解、基于PyTorch卷积层的MNIST分类实战、PyTorch数据处理与模型展示、ResNet实战、有趣的词嵌入、基于PyTorch循环神经网络的中文情感分类实战、自然语言处理的编码器、预训练模型BERT、自然语言处理的解码器、强化学习实战、只具有解码器的GPT-2模型、实战训练自己的ChatGPT、开源大模型ChatGLM使用详解、ChatGLM高级定制化应用实战、对ChatGLM进行高级微调。
from transformers import AutoTokenizer, AutoModel
tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm3-6b", trust_remote_code=True)
model = AutoModel.from_pretrained("THUDM/chatglm3-6b", trust_remote_code=True, device='cuda')
model = model.eval()
response, history = model.chat(tokenizer, "你好", history=[])
print(response)
3.3 适合人群
《从零开始大模型开发与微调:基于PyTorch与ChatGLM》适合PyTorch深度学习初学者、大模型开发初学者、大模型开发人员学习,也适合高等院校人工智能、智能科学与技术、数据科学与大数据技术、计算机科学与技术等专业的师生作为教学参考书。
3.4 粉丝福利
- 本次送书两本
- 活动时间:截止到2023-12-27 9:00
- 参与方式:关注博主、并在此文章下面点赞、收藏并任意评论。
- 一本送给所有粉丝抽奖,另外一本送给购买专栏的同学们,购买专栏并且没有送过书的同学们可私信联系,先到先得,仅限一本
3.5 自主购买
小伙伴也可以访问链接进行自主购买哦~
直达京东购买链接🔗:《从零开始大模型开发与微调:基于PyTorch与ChatGLM》
相关文章:
【优质书籍推荐】LoRA微调的技巧和方法
大家好,我是爱编程的喵喵。双985硕士毕业,现担任全栈工程师一职,热衷于将数据思维应用到工作与生活中。从事机器学习以及相关的前后端开发工作。曾在阿里云、科大讯飞、CCF等比赛获得多次Top名次。现为CSDN博客专家、人工智能领域优质创作者。…...
Linux一行命令配置jdk环境
使用方法: 压缩包上传 到/opt, 更换命令中对应的jdk包名即可。 注意点:jdk-8u151-linux-x64.tar.gz 解压后名字是jdk1.8.0_151 sudo tar -zxvf jdk-8u151-linux-x64.tar.gz -C /opt && echo export JAVA_HOME/opt/jdk1.8.0_151 | sudo tee -a …...
从0开始刷剑指Offer
剑指Offer题解 剑指 Offer 11. 旋转数组的最小数字 思路: 二分O(logn) class Solution {public int stockManagement(int[] stock) {int l 0;int r stock.length - 1;while(l < r && stock[0] stock[r]) r --;if(stock[r] > stock[l]) return stock[0];whi…...
使用Java语言中的算法输出杨辉三角形
一、算法思想 创建一个名为YanghuiTest的类,然后创建二维数组,然后遍历二维数组的第一层,然后初始化第二层数组的大小,然后遍历第二层数组,然后将两侧的数组元素赋为1,然后其它数值通过公式计算,最后可以输…...
人工智能_机器学习071_SVM支持向量机_人脸识别算法_LFW人脸数据加载_与理解---人工智能工作笔记0111
然后我们继续来看 这里有个lfw_home可以看到这个数据是,包含了人脸数据 然后我们继续看,在我们的顶你用户目录下,如果安装了,sklearn就会有这样一个目录, scikit_learn_data目录,这个里面可以看到 可以看到这个文件夹中有个 lfw_home文件夹是对.zip文件夹的解压,这个下载以后…...
Java 8中流Stream API详解
先给个示例,展示Java 8流API的优势 假设我们有以下任务: 给定一个字符串列表,我们需要执行以下操作: 筛选出所有以"A"开头的字符串。 将这些字符串转换为大写。 对这些字符串按照长度进行排序。 最后,将…...
通过 xlsx 解析上传excel的数据
一、前言 在前端开发中,特别是在后台管理系统中,导入数据(上传excel)到后端是是否常见的功能;而一般的实现方式都是通过接口将excel上传到后端,再有后端进行数据解析并做后续操作。 今天,来记录…...
Flink系列之:JDBC SQL 连接器
Flink系列之:JDBC SQL 连接器 一、JDBC SQL 连接器二、依赖三、创建 JDBC 表四、连接器参数五、键处理六、分区扫描七、Lookup Cache八、幂等写入九、JDBC Catalog十、JDBC Catalog 的使用十一、JDBC Catalog for PostgreSQL十二、JDBC Catalog for MySQL十三、数据…...
OpenCV与YOLO学习与研究指南
引言 OpenCV是一个开源的计算机视觉和机器学习软件库,而YOLO(You Only Look Once)是一个流行的实时对象检测系统。对于大学生和初学者而言,掌握这两项技术将大大提升他们在图像处理和机器视觉领域的能力。 基础知识储备 在深入…...
hive中map相关函数总结
目录 hive官方函数解释示例实战 hive官方函数解释 hive官网函数大全地址: hive官网函数大全地址 Return TypeNameDescriptionmapmap(key1, value1, key2, value2, …)Creates a map with the given key/value pairs.arraymap_values(Map<K.V>)Returns an un…...
HttpServletRequestWrapper、HttpServletResponseWrapper结合 过滤器 实现接口的加解密、国际化
目录 一、HttpServletRequestWrapper代码 二、HttpServletRequestWrapper代码 三、加解密过滤器代码 四、国际化过滤器代码 一、HttpServletRequestWrapper代码 package com.vteam.uap.security.httpWrapper;import jakarta.servlet.ReadListener; import jakarta.servlet.…...
最大通关数
洛洛和晶晶计划一起挑战峡谷深渊,峡谷左右有不同数量的关卡,每个关卡需要不同的紫水晶通关,用给定的紫水晶依次通过最多的关卡。 (笔记模板由python脚本于2023年12月23日 12:16:50创建,本篇笔记适合熟悉贪心算法的coder翻阅) 【学…...
MySQL中EXPLAIN关键字解释
什么是MySQL的索引 索引是帮助MySQL高效获取数据的数据结构 MySQL再存储数据之外,数据库系统中还维护者满足特定查找算法的数据结构,这些数据结构以某种引用表中的数据,这样我们就可以通过数据结构上实现的高级查找算法来快速…...
初始JavaScript详解【精选】
Hi i,m JinXiang ⭐ 前言 ⭐ 本篇文章主要介绍初始JavaScript以及部分理论知识 🍉欢迎点赞 👍 收藏 ⭐留言评论 📝私信必回哟😁 🍉博主收将持续更新学习记录获,友友们有任何问题可以在评论区留言 目录 ⭐…...
计数排序,基数排序及排序总结
稳定性:当要排序的数组有相同数据时,排序后相同数据的相对位置不变,则称该排序算法稳定,否则即为不稳定. 在这里我在说说计数排序吧,计数排序就是将给定数组中的数进行计数,在从小到大依次输出即可。简单过…...
【LeetCode】459. 重复的子字符串(KMP2.0)
今日学习的文章链接和视频链接 leetcode题目地址:459. 重复的子字符串 代码随想录题解地址:代码随想录 题目简介 给定一个非空的字符串 s ,检查是否可以通过由它的一个子串重复多次构成。 看到题目的第一想法(可以贴代码) 1.…...
CSS(五) -- 动效实现(立体盒子旋转-四方体+正六边)
一. 四面立体旋转 正方形旋转 小程序中 wxss中 <!-- 背景 --><view class"dragon"><!--旋转物体位置--><view class"dragon-position"><!--旋转 加透视 有立体的感觉--><view class"d-parent"><view …...
Win10使用OpenSSL生成证书的详细步骤(NodeJS Https服务器源码)
远程开启硬件权限,会用到SSL证书。 以下是Win10系统下用OpenSSL生成测试用证书的步骤。 Step 1. 下载OpenSSL,一般选择64位的MSI Win32/Win64 OpenSSL Installer for Windows - Shining Light Productions 一路点下来,如果后续请你捐款ÿ…...
sql_lab之sqli中的堆叠型注入(less-38)
堆叠注入(less-38) 1.判断注入类型 http://127.0.0.3/less-38/?id1 and 12 -- s 没有回显 http://127.0.0.3/less-38/?id1 and 11 -- s 有回显 则说明是单字节’注入 2.查询字段数 http://127.0.0.3/less-38/?id1 order by 4 -- s 报错 http:/…...
第5章-第3节-Java中对象的封装性以及局部变量、this、static
1、局部变量 【问题1】:什么是局部变量? 答:定义在局部位置的变量就是局部变量。 【问题2】:什么是局部位置? 答:方法的形参位置、方法体的内部。 【位置关系图】: class Xxx { //成员位…...
使用docker在3台服务器上搭建基于redis 6.x的一主两从三台均是哨兵模式
一、环境及版本说明 如果服务器已经安装了docker,则忽略此步骤,如果没有安装,则可以按照一下方式安装: 1. 在线安装(有互联网环境): 请看我这篇文章 传送阵>> 点我查看 2. 离线安装(内网环境):请看我这篇文章 传送阵>> 点我查看 说明:假设每台服务器已…...
vscode(仍待补充)
写于2025 6.9 主包将加入vscode这个更权威的圈子 vscode的基本使用 侧边栏 vscode还能连接ssh? debug时使用的launch文件 1.task.json {"tasks": [{"type": "cppbuild","label": "C/C: gcc.exe 生成活动文件"…...
解决本地部署 SmolVLM2 大语言模型运行 flash-attn 报错
出现的问题 安装 flash-attn 会一直卡在 build 那一步或者运行报错 解决办法 是因为你安装的 flash-attn 版本没有对应上,所以报错,到 https://github.com/Dao-AILab/flash-attention/releases 下载对应版本,cu、torch、cp 的版本一定要对…...
鱼香ros docker配置镜像报错:https://registry-1.docker.io/v2/
使用鱼香ros一件安装docker时的https://registry-1.docker.io/v2/问题 一键安装指令 wget http://fishros.com/install -O fishros && . fishros出现问题:docker pull 失败 网络不同,需要使用镜像源 按照如下步骤操作 sudo vi /etc/docker/dae…...
多种风格导航菜单 HTML 实现(附源码)
下面我将为您展示 6 种不同风格的导航菜单实现,每种都包含完整 HTML、CSS 和 JavaScript 代码。 1. 简约水平导航栏 <!DOCTYPE html> <html lang"zh-CN"> <head><meta charset"UTF-8"><meta name"viewport&qu…...
聊一聊接口测试的意义有哪些?
目录 一、隔离性 & 早期测试 二、保障系统集成质量 三、验证业务逻辑的核心层 四、提升测试效率与覆盖度 五、系统稳定性的守护者 六、驱动团队协作与契约管理 七、性能与扩展性的前置评估 八、持续交付的核心支撑 接口测试的意义可以从四个维度展开,首…...
【数据分析】R版IntelliGenes用于生物标志物发现的可解释机器学习
禁止商业或二改转载,仅供自学使用,侵权必究,如需截取部分内容请后台联系作者! 文章目录 介绍流程步骤1. 输入数据2. 特征选择3. 模型训练4. I-Genes 评分计算5. 输出结果 IntelliGenesR 安装包1. 特征选择2. 模型训练和评估3. I-Genes 评分计…...
【Go语言基础【13】】函数、闭包、方法
文章目录 零、概述一、函数基础1、函数基础概念2、参数传递机制3、返回值特性3.1. 多返回值3.2. 命名返回值3.3. 错误处理 二、函数类型与高阶函数1. 函数类型定义2. 高阶函数(函数作为参数、返回值) 三、匿名函数与闭包1. 匿名函数(Lambda函…...
【SSH疑难排查】轻松解决新版OpenSSH连接旧服务器的“no matching...“系列算法协商失败问题
【SSH疑难排查】轻松解决新版OpenSSH连接旧服务器的"no matching..."系列算法协商失败问题 摘要: 近期,在使用较新版本的OpenSSH客户端连接老旧SSH服务器时,会遇到 "no matching key exchange method found", "n…...
Selenium常用函数介绍
目录 一,元素定位 1.1 cssSeector 1.2 xpath 二,操作测试对象 三,窗口 3.1 案例 3.2 窗口切换 3.3 窗口大小 3.4 屏幕截图 3.5 关闭窗口 四,弹窗 五,等待 六,导航 七,文件上传 …...
