【优质书籍推荐】LoRA微调的技巧和方法
大家好,我是爱编程的喵喵。双985硕士毕业,现担任全栈工程师一职,热衷于将数据思维应用到工作与生活中。从事机器学习以及相关的前后端开发工作。曾在阿里云、科大讯飞、CCF等比赛获得多次Top名次。现为CSDN博客专家、人工智能领域优质创作者。喜欢通过博客创作的方式对所学的知识进行总结与归纳,不仅形成深入且独到的理解,而且能够帮助新手快速入门。今天给大家带来的文章是LoRA微调的技巧和方法,希望能对同学们有所帮助。
文章目录
- 1. 定义
- 2. LoRA微调参数
- 3. 书籍推荐
- 3.1 《从零开始大模型开发与微调:基于PyTorch与ChatGLM》
- 3.2 内容介绍
- 3.3 适合人群
- 3.4 粉丝福利
- 3.5 自主购买
1. 定义
对于大语言模型而言,全量微调的代价是比较高的,需要数百GB的显存来训练具有几B参数的模型。为了解决资源不足的问题,大佬们提出了一种新的方法:低秩适应(Low-Rank Adaptation)。与微调OPT-175B相比,LoRA可以将可训练参数数量减少一万倍,并且GPU显存降低3倍以上。详细内容可参考论文《LoRA: Low-Rank Adaptation of Large Language Models》和HuggingFace PEFT博客文章《Parameter-Efficient Fine-Tuning of Billion-Scale Models on Low-Resource Hardware》。
LoRA是一种常用的高效微调的训练方法(PEFT),旨在加快大型语言模型的训练过程,同时减少显存的使用。通过引入更新矩阵对现有权重进行操作,LoRA专注于训练新添加的权重。LoRA方法具有以下的几大优点:
- 保留预训练权重:LoRA保持先前训练权重的冻结状态,最小化了灾难性遗忘的风险。这确保了模型在适应新数据时保留其现有知识。
- 已训练权重的可移植性:与原始模型相比,LoRA中使用的秩分解矩阵参数明显较少。这个特点使得经过训练的LoRA权重可以轻松地转移到其他环境中,使它们非常易于移植。
- 与注意力层集成:通常将LoRA矩阵合并到原始模型的注意力层中。此外,自适应缩放参数允许控制模型对新培训数据调整程度。
- 显存效率:LoRA改进后具有更高效利用显存资源能力,在不到本机微调所需计算量3倍情况下运行微调任务成为可能。
对于普通用户来说,依然很难满足1/3的显存需求。幸运的是,大佬们又发明了一种新的LoRA训练方法:量化低秩适应(QLoRA)。它利用bitsandbytes库对语言模型进行即时和近无损量化,并将其应用于LoRA训练过程中。这导致显存需求急剧下降,可以在2个3090卡上微调70B的模型。相比之下,要微调同等规模的模型通常需要超过16个A100-80GB GPU,对应的成本将非常巨大。详细内容可参考论文QLoRA: Efficient Finetuning of Quantized LLMs。
2. LoRA微调参数
首先最关键的参数为:低秩矩阵对应的秩(rank)。为了减少显存,对权重矩阵应用了低秩分解。在LoRA论文中,建议rank设置不小于8(r = 8)。请记住,较高的rank会导致更好的结果,但需要更多的显存。数据集的数量和复杂度越高,所需的rank就越高。
除此之外,另外需要设置的参数即为LoRA微调对应的网络层。最基本的训练对象是查询向量(例如q_proj)和值向量(例如v_proj)投影矩阵。不同模型对应的网络层如下所示:
Model | Model size | Default module |
---|---|---|
Baichuan | 7B/13B | W_packbaichuan |
Baichuan2 | 27B/13B | W_packbaichuan2 |
BLOOM | 560M/1.1B/1.7B/3B/7.1B/176B | query_key_value |
BLOOMZ | 560M/1.1B/1.7B/3B/7.1B/176B | query_key_value |
ChatGLM | 36B | query_key_value |
Falcon | 7B/40B/180B | query_key_value |
InternLM | 7B/20B | q_proj,v_proj |
LLaMA | 7B/13B/33B/65B | q_proj,v_proj |
LLaMA-2 | 7B/13B/70B | q_proj,v_proj |
Mistral | 7B | q_proj,v_proj |
Mixtral | 8x7B | q_proj,v_proj |
Phi | 1.5/21.3B/2.7B | Wqkv-Q |
Qwen | 1.8B/7B/14B/72B | c_attn |
XVERSE | 7B/13B/65B | q_proj,v_proj |
Yi | 6B/34B | q_proj,v_proj |
3. 书籍推荐
大模型是深度学习自然语言处理皇冠上的一颗明珠,也是当前AI和NLP研究与产业中最重要的方向之一。本书使用PyTorch 2.0作为学习大模型的基本框架,以ChatGLM为例详细讲解大模型的基本理论、算法、程序实现、应用实战以及微调技术,为读者揭示大模型开发技术。
3.1 《从零开始大模型开发与微调:基于PyTorch与ChatGLM》
3.2 内容介绍
大模型是深度学习自然语言处理皇冠上的一颗明珠,也是当前AI和NLP研究与产业中最重要的方向之一。本书使用PyTorch 2.0作为学习大模型的基本框架,以ChatGLM为例详细讲解大模型的基本理论、算法、程序实现、应用实战以及微调技术,为读者揭示大模型开发技术。本书配套示例源代码、PPT课件。
《从零开始大模型开发与微调:基于PyTorch与ChatGLM》共18章,内容包括人工智能与大模型、PyTorch 2.0深度学习环境搭建、从零开始学习PyTorch 2.0、深度学习基础算法详解、基于PyTorch卷积层的MNIST分类实战、PyTorch数据处理与模型展示、ResNet实战、有趣的词嵌入、基于PyTorch循环神经网络的中文情感分类实战、自然语言处理的编码器、预训练模型BERT、自然语言处理的解码器、强化学习实战、只具有解码器的GPT-2模型、实战训练自己的ChatGPT、开源大模型ChatGLM使用详解、ChatGLM高级定制化应用实战、对ChatGLM进行高级微调。
from transformers import AutoTokenizer, AutoModel
tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm3-6b", trust_remote_code=True)
model = AutoModel.from_pretrained("THUDM/chatglm3-6b", trust_remote_code=True, device='cuda')
model = model.eval()
response, history = model.chat(tokenizer, "你好", history=[])
print(response)
3.3 适合人群
《从零开始大模型开发与微调:基于PyTorch与ChatGLM》适合PyTorch深度学习初学者、大模型开发初学者、大模型开发人员学习,也适合高等院校人工智能、智能科学与技术、数据科学与大数据技术、计算机科学与技术等专业的师生作为教学参考书。
3.4 粉丝福利
- 本次送书两本
- 活动时间:截止到2023-12-27 9:00
- 参与方式:关注博主、并在此文章下面点赞、收藏并任意评论。
- 一本送给所有粉丝抽奖,另外一本送给购买专栏的同学们,购买专栏并且没有送过书的同学们可私信联系,先到先得,仅限一本
3.5 自主购买
小伙伴也可以访问链接进行自主购买哦~
直达京东购买链接🔗:《从零开始大模型开发与微调:基于PyTorch与ChatGLM》
相关文章:
【优质书籍推荐】LoRA微调的技巧和方法
大家好,我是爱编程的喵喵。双985硕士毕业,现担任全栈工程师一职,热衷于将数据思维应用到工作与生活中。从事机器学习以及相关的前后端开发工作。曾在阿里云、科大讯飞、CCF等比赛获得多次Top名次。现为CSDN博客专家、人工智能领域优质创作者。…...
Linux一行命令配置jdk环境
使用方法: 压缩包上传 到/opt, 更换命令中对应的jdk包名即可。 注意点:jdk-8u151-linux-x64.tar.gz 解压后名字是jdk1.8.0_151 sudo tar -zxvf jdk-8u151-linux-x64.tar.gz -C /opt && echo export JAVA_HOME/opt/jdk1.8.0_151 | sudo tee -a …...
从0开始刷剑指Offer
剑指Offer题解 剑指 Offer 11. 旋转数组的最小数字 思路: 二分O(logn) class Solution {public int stockManagement(int[] stock) {int l 0;int r stock.length - 1;while(l < r && stock[0] stock[r]) r --;if(stock[r] > stock[l]) return stock[0];whi…...
使用Java语言中的算法输出杨辉三角形
一、算法思想 创建一个名为YanghuiTest的类,然后创建二维数组,然后遍历二维数组的第一层,然后初始化第二层数组的大小,然后遍历第二层数组,然后将两侧的数组元素赋为1,然后其它数值通过公式计算,最后可以输…...
人工智能_机器学习071_SVM支持向量机_人脸识别算法_LFW人脸数据加载_与理解---人工智能工作笔记0111
然后我们继续来看 这里有个lfw_home可以看到这个数据是,包含了人脸数据 然后我们继续看,在我们的顶你用户目录下,如果安装了,sklearn就会有这样一个目录, scikit_learn_data目录,这个里面可以看到 可以看到这个文件夹中有个 lfw_home文件夹是对.zip文件夹的解压,这个下载以后…...
Java 8中流Stream API详解
先给个示例,展示Java 8流API的优势 假设我们有以下任务: 给定一个字符串列表,我们需要执行以下操作: 筛选出所有以"A"开头的字符串。 将这些字符串转换为大写。 对这些字符串按照长度进行排序。 最后,将…...
通过 xlsx 解析上传excel的数据
一、前言 在前端开发中,特别是在后台管理系统中,导入数据(上传excel)到后端是是否常见的功能;而一般的实现方式都是通过接口将excel上传到后端,再有后端进行数据解析并做后续操作。 今天,来记录…...
Flink系列之:JDBC SQL 连接器
Flink系列之:JDBC SQL 连接器 一、JDBC SQL 连接器二、依赖三、创建 JDBC 表四、连接器参数五、键处理六、分区扫描七、Lookup Cache八、幂等写入九、JDBC Catalog十、JDBC Catalog 的使用十一、JDBC Catalog for PostgreSQL十二、JDBC Catalog for MySQL十三、数据…...
OpenCV与YOLO学习与研究指南
引言 OpenCV是一个开源的计算机视觉和机器学习软件库,而YOLO(You Only Look Once)是一个流行的实时对象检测系统。对于大学生和初学者而言,掌握这两项技术将大大提升他们在图像处理和机器视觉领域的能力。 基础知识储备 在深入…...
hive中map相关函数总结
目录 hive官方函数解释示例实战 hive官方函数解释 hive官网函数大全地址: hive官网函数大全地址 Return TypeNameDescriptionmapmap(key1, value1, key2, value2, …)Creates a map with the given key/value pairs.arraymap_values(Map<K.V>)Returns an un…...
HttpServletRequestWrapper、HttpServletResponseWrapper结合 过滤器 实现接口的加解密、国际化
目录 一、HttpServletRequestWrapper代码 二、HttpServletRequestWrapper代码 三、加解密过滤器代码 四、国际化过滤器代码 一、HttpServletRequestWrapper代码 package com.vteam.uap.security.httpWrapper;import jakarta.servlet.ReadListener; import jakarta.servlet.…...
最大通关数
洛洛和晶晶计划一起挑战峡谷深渊,峡谷左右有不同数量的关卡,每个关卡需要不同的紫水晶通关,用给定的紫水晶依次通过最多的关卡。 (笔记模板由python脚本于2023年12月23日 12:16:50创建,本篇笔记适合熟悉贪心算法的coder翻阅) 【学…...
MySQL中EXPLAIN关键字解释
什么是MySQL的索引 索引是帮助MySQL高效获取数据的数据结构 MySQL再存储数据之外,数据库系统中还维护者满足特定查找算法的数据结构,这些数据结构以某种引用表中的数据,这样我们就可以通过数据结构上实现的高级查找算法来快速…...
初始JavaScript详解【精选】
Hi i,m JinXiang ⭐ 前言 ⭐ 本篇文章主要介绍初始JavaScript以及部分理论知识 🍉欢迎点赞 👍 收藏 ⭐留言评论 📝私信必回哟😁 🍉博主收将持续更新学习记录获,友友们有任何问题可以在评论区留言 目录 ⭐…...
计数排序,基数排序及排序总结
稳定性:当要排序的数组有相同数据时,排序后相同数据的相对位置不变,则称该排序算法稳定,否则即为不稳定. 在这里我在说说计数排序吧,计数排序就是将给定数组中的数进行计数,在从小到大依次输出即可。简单过…...
【LeetCode】459. 重复的子字符串(KMP2.0)
今日学习的文章链接和视频链接 leetcode题目地址:459. 重复的子字符串 代码随想录题解地址:代码随想录 题目简介 给定一个非空的字符串 s ,检查是否可以通过由它的一个子串重复多次构成。 看到题目的第一想法(可以贴代码) 1.…...
CSS(五) -- 动效实现(立体盒子旋转-四方体+正六边)
一. 四面立体旋转 正方形旋转 小程序中 wxss中 <!-- 背景 --><view class"dragon"><!--旋转物体位置--><view class"dragon-position"><!--旋转 加透视 有立体的感觉--><view class"d-parent"><view …...
Win10使用OpenSSL生成证书的详细步骤(NodeJS Https服务器源码)
远程开启硬件权限,会用到SSL证书。 以下是Win10系统下用OpenSSL生成测试用证书的步骤。 Step 1. 下载OpenSSL,一般选择64位的MSI Win32/Win64 OpenSSL Installer for Windows - Shining Light Productions 一路点下来,如果后续请你捐款ÿ…...
sql_lab之sqli中的堆叠型注入(less-38)
堆叠注入(less-38) 1.判断注入类型 http://127.0.0.3/less-38/?id1 and 12 -- s 没有回显 http://127.0.0.3/less-38/?id1 and 11 -- s 有回显 则说明是单字节’注入 2.查询字段数 http://127.0.0.3/less-38/?id1 order by 4 -- s 报错 http:/…...
第5章-第3节-Java中对象的封装性以及局部变量、this、static
1、局部变量 【问题1】:什么是局部变量? 答:定义在局部位置的变量就是局部变量。 【问题2】:什么是局部位置? 答:方法的形参位置、方法体的内部。 【位置关系图】: class Xxx { //成员位…...
IP应用场景的规划
IP地址作为互联网通信的基石,在现代社会中扮演着至关重要的角色。本文将深入探讨IP地址在不同应用场景中的规划与拓展,探讨其在网络通信、安全、商业、医疗和智能城市等领域的关键作用与未来发展趋势。 IP地址的基本原理 IP地址是分配给网络上设备的数…...
27 redis 的 sentinel 集群
前言 redis 的哨兵的相关业务功能的实现 哨兵的主要作用是 检测 redis 主从集群中的 master 是否挂掉, 单个哨兵节点识别 master 下线为主管下线, 超过 quorum 个 哨兵节点 认为 master 挂掉, 识别为 客观下线 然后做 failover 的相关处理, 重新选举 master 节点 我们这里…...
计算机网络 网络安全技术
网络安全基本要素 机密性 不泄密完整性 信息不会被破坏可用性 授权用户 正常有效使用可控性 被控制可审查性 网络安全的结构层次 物理安全 物理介质安全控制 计算机操作系统安全服务 应用层次 被动攻击 :截获信息 主动攻击 : 中断信息,篡改,伪造 篡改 …...
WebAssembly 的魅力:高效、安全、跨平台(下)
🤍 前端开发工程师(主业)、技术博主(副业)、已过CET6 🍨 阿珊和她的猫_CSDN个人主页 🕠 牛客高级专题作者、在牛客打造高质量专栏《前端面试必备》 🍚 蓝桥云课签约作者、已在蓝桥云…...
二维码智慧门牌管理系统升级:确保公安机关数据安全无忧
文章目录 前言一、多重安全防护措施二、安全措施综述与展望 前言 数据安全挑战与重要性 在数字化社会,数据安全对公共管理机构,尤其是公安机关而言,至关重要。随着二维码技术在门牌管理系统中的广泛应用,管理变得更智能、更便捷。…...
Golang leetcode59 螺旋矩阵
螺旋矩阵 leetcode59 初次尝试,从中心向外 func main() {n : 3fmt.Println(generateMatrix(n)) }// 初版,我们从中心点开始 func generateMatrix(n int) [][]int {//1.nXn矩阵table : make([][]int, n)for i : 0; i < n; i {table[i] make([]int, …...
深度学习(Deep Learning) 简介
深度学习(Deep Learning) 深度学习在海量数据情况下的效果要比机器学习更为出色。 多层神经网络模型 神经网络 有监督机器学习模型 输入层隐藏层 (黑盒)输出层 概念: 神经元 Neuron A^(n1)网络权重 Weights W^n偏移 bias b^n 激活函数: ReLUtan…...
服务器raid中磁盘损坏或下线造成阵列降级更换新硬盘重建方法
可能引起磁盘阵列硬盘下线或故障的情况: 硬件故障: 硬盘物理损坏:包括但不限于坏道、电路板故障、磁头损坏、盘片划伤、电机故障等。连接问题:如接口损坏、数据线或电源线故障、SATA/SAS控制器问题等。热插拔错误:在不…...
Ubuntu 常用命令之 exit 命令用法介绍
📑Linux/Ubuntu 常用命令归类整理 exit命令在Ubuntu系统下用于结束一个终端会话。它可以用于退出当前的shell,结束当前的脚本执行,或者结束一个ssh会话。 exit命令的参数是一个可选的整数,用于指定退出状态。如果没有指定&#…...
依托亚马逊云科技构建韧性应用
背景 现代业务系统受到越来越多的韧性相关的挑战,特别是客户要求他们的业务系统 724 不间断的运行。因此,韧性对于云的基础设施和应用系统有着至关重要的作用。 亚马逊云科技把韧性视为一项最基本的工作,为了让我们的业务系统能持续优雅地提供…...
dw软件做的东西怎么在网站用/营销网站建设哪家快
2019独角兽企业重金招聘Python工程师标准>>> 队列:先进先出 栈:先进后出; 实现栈:有队列1有队列2。实现原理,始终保持一个队列为空队列。取元素时,将不为空的队列所有元素减一全部放入另外一个队列。将最后…...
网站公众号信息化建设工作计划/成都seo优化排名公司
随着各种设备达到所谓的“视网膜显示”水平,高分辨率显示器正变得越来越普遍。 您的网站和应用需要在这些屏幕分辨率上看起来不错,因此这里有一些可以帮助您的插件。 1. retina.js 一个开源脚本 ,可以轻松地将高分辨率图像提供给具有视网膜显…...
深圳市住建局和建设局官网/seo排名怎么做
参考链接: class.__mro__ 参考链接: class.mro() 参考链接: class.__subclasses__() 实验代码展示: # class Person(): # class Person(object): # class Person: class Person: # class Person(object): # class Person: # class Person(): 这三种写法都是可以的定义基类Pe…...
外贸都是在哪些网站做/seo排名优化方式
在《Server 层混杂信息字典表 | 全方位认识 information_schema》中,我们详细介绍了information_schema下的状态变量、系统变量、进程状态、字符集和校对规则等字典表,本期我们将为大家带来系列第五篇《InnoDB 层系统字典表 | 全方位认识 information_sc…...
介绍做燕窝的网站/百度搜索推广费用
UVM验证环境–force的一种用法...
怎么查看网站的ftp/百度邮箱登录入口
近来无事,总觉不可在学习上落下,所以想了解一下微服务方面的。 当然因为没有使用过微服务,学习后也容易淡忘,所以只供自己学习,方便以后查看和调整。 为什么选择dubbo 这个其实网上一百度应该就有很多很多理由。还有…...