当前位置: 首页 > news >正文

tcp vegas 为什么好

我吹捧 bbr 时曾论证过它在和 buffer 拧巴的时候表现如何优秀,但这一次说 vegas 时,我说的是从拥塞控制这个问题本身看来,vegas 为什么好,并且正确。

接着昨天 tcp vegas 鉴赏 继续扯。

假设一群共享带宽的流量中有流量退出或有新流量进入,剩余流如何感知到这事。loss-based 算法按照自己的步调填充 buffer 直到丢包,它们无法感知任何资源变化,而 bbr 则通过定期的 probe 来探测,但如果在 probe 之前有其它 bbr 流先行 probe,则后 probe 的流什么都拿不到。虽然它们都没有能力自动感知到资源变化,但它们无疑都希望自己能做到这一点。

本质上,大家都被灌输了 capacity-search 思想,想方设法要榨干最后 1k 的带宽,却往往适得其反,包括 bbr 在内的绝大多数算法引入越搞越复杂的 probe 机制,却没有收到应有的收益,而 vegas 采用松弛策略,反而自动做到了带宽利用率的最优化。

vegas 依靠 alpha < diff = (expected - actual) * basertt < beta 自动做到这一点。

如果有流量退出,所有流都会感知到 rtt 变小,actual 变大,diff 往左偏置,只要偏过左值 alpha,vegas 就会增加 cwnd 以适应这一变化。也就是说,流量退出腾出的 buffer 由大家公平瓜分了。

如果有流量进入,所有流都会感知到 rtt 变大,actual 变小,diff 往右偏置,只要偏过右值 beta,vegas 就会减少 cwnd 以适应这一变化,每条流都会腾出一些 inflight 分享给新进入的流。

vegas 是真正的拥塞控制。vegas 不做 capacity-search,我们看到,即使有流退出,也不会有单独的流抢走大多数带宽,因为 rtt 变化信号是大家同时可捕捉同时可反应的(相比之下,loss 信号则依赖比如说 red 丢谁没丢谁)。

再看 rtt 公平性。

diff = cwnd (1 - basertt / lastrtt) = cwnd (1 - basertt / (basertt + queuing_delay)) = cwnd (1 - 1 / (1 + queuing_delay / basertt)) ,设 basertt 是 y,cwnd 为 x,queuing_delay 为常数 q,diff = x(1 - 1 / (1 + q / y)) 要想把 diff 限制在相同的 alpha,beta 区间内,大家的 q 都是同一个,y 越大,x 越大,但带宽却一致,vegas 完美自适应 rtt。

不光如此,rtt 越小,带宽感知越灵敏,因为 rtt 越大,抖动代价越大,所谓尾大不掉,这不光影响自己,还影响其它流的公平性,因此 rtt 越大越趋向稳定。rtt 越大,获得的份额越小。其实 vegas 是按 bdp 分配带宽的,rtt 越大,buffer 占比越小,这是公平的根源。下面是简单的论证。

依旧设 basertt 是 y,cwnd 为 x,由于有流退出 q 由 2 减少到 1,diff 的 diff 为 q 变化前后两个 diff 相减,可表示为 z = -x / ((y + 2)(y + 1)),直观画图如下(就不求偏导了):
在这里插入图片描述

我们已经知道,y 越大,x 相对越大,如图所示(如果短肥管道,箭头贴着 x 轴,沿 y 轴存在 rtt 不公平,本文暂不谈),z 趋向于箭头指向的方向,在那里,平面非常平缓,这意味着,diff 受 basertt 影响非常小,对变化的感知力一致,进而能获得瓜分同样份额的 buffer,这就是公平的根源。

下面又是个有趣的重头戏。

vegas 对 loss 完全无感,因此它不得不修改 tcp 重传算法以适配它自己 “夹逼 diff 区间” 的算法。reno 早已深入人心,并且基于 loss-based reno 对拥塞控制做了标准化,有趣的是,包括 reno 在内的所有 loss-based cc 几乎都在使用 aimd 进行控制,而它们控制的并不是拥塞,vegas 专门控制拥塞的算法因为是后来的,反倒让人觉得奇怪。

vegas 不再使用 3 个dupack 触发重传,而采用了一种时间序方法,我这里截一个 vegas 原始论文 的图:
在这里插入图片描述

仔细看,这不就是 rack 嘛,关于 rack 可参考 rack 与 fack。rack 时间序最早正是来源于 vegas,它实际上在 rack 发布之前就早已被很多家公司运用。

时间序的一个重要作用就是解耦了重传和丢包检测。曾经重传依赖于某种丢包信号,比如 3 次 dupack 本身就算一种奇技淫巧,一旦等不到 3 次 dupack,这个机制就完全失效,其意义非常有限,但时间序重传不再依赖对端反馈,可源源不断提供可供传输的报文,剩下的交给拥塞控制。

有了时间序重传机制,就可以将丢包检测和重传分离,vegas 可完全不在乎 loss 而完全通过夹逼 diff 到 alpha,beta 区间完成拥塞控制,完全不再区分参与 diff 计算的是新数据还是重传数据,简洁而唯美。

linux tcp 内置了拥塞状态机,如今已经合入了 rack 作为除 dupack 之外的另一种触发重传的选择,并且已经支持 cong_control 回调完全接管整个拥塞控制而绕开拥塞状态机(比如 prr 会被绕开,因为如果不将 loss 做信号,也就没必要对 loss 反应那么大),我觉得可以实现一版完备的真 vegas 了,言外之意,此前的 vegas 是假的。

最后,vegas 改进了慢启动,不再盲目乘以 2,而是在慢启动期间加入了 diff 判断,从而择机退出慢启动 or 改变激进程度。

总之,从头看到尾,vegas 只有 diff 判断,任何时候(无论慢启动,重传等)只要算 diff 并和 alpha,beta 比较就行了,在这么简单的逻辑下,前面也简单论证过,vegas 的公平性和效率都非常好。

我曾经写过一个 cugas = cubic + vegas,但其实还不如将它变成 bbr 呢,如果世界上只有一种 vegas 就会非常稳定,因为天生公平的算法就不会引入很多公平性和效率之间的权衡问题,进而也不会引入号称能解决这些问题,结果只是新晋一员卷客,看看现在的拥塞控制领域那些不雅又奇怪的算法。

浙江温州皮鞋湿,下雨进水不会胖。

相关文章:

tcp vegas 为什么好

我吹捧 bbr 时曾论证过它在和 buffer 拧巴的时候表现如何优秀&#xff0c;但这一次说 vegas 时&#xff0c;我说的是从拥塞控制这个问题本身看来&#xff0c;vegas 为什么好&#xff0c;并且正确。 接着昨天 tcp vegas 鉴赏 继续扯。 假设一群共享带宽的流量中有流量退出或有…...

【设计模式】命令模式

其他系列文章导航 Java基础合集数据结构与算法合集 设计模式合集 多线程合集 分布式合集 ES合集 文章目录 其他系列文章导航 文章目录 前言 一、什么是命令模式&#xff1f; 二、命令模式的优点和应用场景 三、命令模式的要素和实现 3.1 命令 3.2 具体命令 3.3 接受者 …...

Unity头发飘动效果

Unity头发飘动 介绍动作做头发飘动头发骨骼绑定模拟物理组件 UnityChan插件下载UnityChan具体用法确定人物是否绑定好骨骼节点&#xff08;要做的部位比如头发等&#xff09;给人物添加SpringManager骨骼管理器给骨骼节点添加SpringBone这里给每个头发骨骼都添加上SpringBone。…...

【MIKE】MIKE河网编辑器操作说明

目录 MIKE河网编辑器说明河网定义河网编辑工具栏河网文件(.nwk11)输入步骤1. 从传统的地图引入底图1.1 底图准备1.2 引入河网底图1.3 输入各河段信息2. 从ARCView .shp文件引入底图MIKE河网编辑器说明 河网编辑器主要功能有两个: ①河网的编辑和参数输人,包括数字化河网及…...

RIPV1配置实验

查看路由器路由表&#xff1a; 删除手工配置的静态路由项&#xff1a; Route1->Config->static Remove删除路由项 删除Route3的路由项&#xff0c;方法同上删除Route2的路由项&#xff0c;方法同上 完成路由器RIP配置&#xff1a; Route1->Config->RIP->Ne…...

快速实现农业机械设备远程监控

农业机械设备远程监控解决方案 一、项目背景 近年来&#xff0c;农业生产事故时有发生&#xff0c;农业安全问题已经成为农业生产中的关键问题&#xff0c;农业监控系统在农业安全生产中发挥着重要作用。农业机械设备以计划维修或定期保养为主&#xff0c;在日常应用的过程中因…...

解决用Fiddler抓包,网页显示你的连接不是专用/私密连接

关键&#xff1a;重置fiddler的证书 在Fiddler重置证书 1、Actions --> Reset All Certificates --> 弹窗一路yes 2、关掉Fiddler&#xff0c;重新打开 3、手机删掉证书&#xff0c;重新下载安装。 &#xff08;如果还不行&#xff0c;重新试一遍&#xff0c;先把浏览器…...

单片机原理及应用:流水灯的点亮

流水灯是一种简单的单片机控制电路&#xff0c;由许多LED组成&#xff0c;电路工作时LED会按顺序点亮&#xff0c;类似于流水的效果。 下面是运行在keil上的代码&#xff0c;分别使用了数组&#xff0c;移位符和库函数来表示。 //数组法 #include <reg52.h> //头文…...

蓝桥杯宝藏排序算法(冒泡、选择、插入)

冒泡排序: def bubble_sort(li): # 函数方式for i in range(len(li)-1):exchangeFalsefor j in range(len(li)-i-1):if li[j]>li[j1]:li[j],li[j1]li[j1],li[j]exchangeTrueif not exchange:return 选择排序: 从左往右找到最小的元素&#xff0c;放在起始位置…...

使用@jiaminghi/data-view实现一个数据大屏

<template><div class"content bg"><!-- 全局容器 --><!-- <dv-full-screen-container> --><!-- 第二行 --><div class"module-box" style"align-items: start; margin-top: 10px"><!-- 左 -->…...

神经网络:池化层知识点

1.CNN中池化的作用 池化层的作用是对感受野内的特征进行选择&#xff0c;提取区域内最具代表性的特征&#xff0c;能够有效地减少输出特征数量&#xff0c;进而减少模型参数量。按操作类型通常分为最大池化(Max Pooling)、平均池化(Average Pooling)和求和池化(Sum Pooling)&a…...

微服务常见的配置中心简介

微服务架构中&#xff0c;常见的配置中心包括以下几种&#xff1a; Spring Cloud Config&#xff1a; Spring Cloud Config是官方推荐的配置中心解决方案&#xff0c;它支持将配置文件存储在Git、SVN等版本控制系统中。通过提供RESTful API&#xff0c;各个微服务可以远程获取和…...

银河麒麟v10 rpm安装包 安装mysql 8.35

银河麒麟v10 rpm安装包 安装mysql 8.35 1、卸载mariadb2、下载Mysql安装包3、安装Mysql 8.353.1、安装Mysql 8.353.3、安装后配置 1、卸载mariadb 由于银河麒麟v10系统默认安装了mariadb 会与Mysql相冲突&#xff0c;因此首先需要卸载系统自带的mariadb 查看系统上默认安装的M…...

一篇文章带你搞定CTFMice基本操作

CTF比赛是在最短时间内拿到最多的flag&#xff0c;mice必须要有人做&#xff0c;或者一支战队必须留出一块时间专门写一些mice&#xff0c;web&#xff0c;pwn最后的一两道基本都会有难度&#xff0c;这时候就看mice的解题速度了&#xff01; 说实话&#xff0c;这是很大一块&…...

Spring security之授权

前言 本篇为大家带来Spring security的授权&#xff0c;首先要理解一些概念&#xff0c;有关于&#xff1a;权限、角色、安全上下文、访问控制表达式、方法级安全性、访问决策管理器 一.授权的基本介绍 Spring Security 中的授权分为两种类型&#xff1a; 基于角色的授权&…...

模式识别与机器学习(十一):Bagging

1.原理 Bagging [Breiman, 1996a] 是井行式集成学习方法最著名的代表.从名字即可看出&#xff0c;它直接基于自助采样法(bootstrap sampling)。给定包含m 个样本的数据集&#xff0c;我们先随机取出一个样本放入采样集中&#xff0c;再把该样本放回初始数据集&#xff0c;使得…...

数据压缩(哈夫曼编码)

【问题描述】在数据压缩问题中&#xff0c;需要将数据文件转换成由二进制字符0、1组成的二进制串&#xff0c;称之为编码&#xff0c;已知待压缩的数据中包含若干字母&#xff08;A-Z&#xff09;&#xff0c;为获得更好的空间效率&#xff0c;请设计有效的用于数据压缩的二进制…...

移动安全APP--Frida+模拟器,模拟器+burp联动

最近测APP被通报了&#xff0c;问题点测得比较深&#xff0c;涉及到frida和burp抓包&#xff0c;一般在公司可能会有网络的限制&#xff0c;手机没办法抓包&#xff0c;我就直接在模拟器上试了&#xff0c;就在这记录一下安装过程。 目录 一、Frida安装 二、burp与逍遥模拟器…...

MATLAB遗传算法工具箱的三种使用方法

MATLAB中有三种调用遗传算法的方式&#xff1a; 一、遗传算法的开源文件 下载“gatbx”压缩包文件&#xff0c;解压后&#xff0c;里面有多个.m文件&#xff0c;可以看到这些文件的编辑日期都是1998年&#xff0c;很古老了。 这些文件包含了遗传算法的基础操作&#xff0c;包含…...

复习linux——时间同步服务

加密和安全当前都离不开时间的同步&#xff0c;否则各种网络服务可能不能正常运行 时间错误可能导致证书应用出错 时间同步服务 多主机协作工作时,各个主机的时间同步很重要&#xff0c;时间不一致会造成很多重要应用故障&#xff0c;利用NTP协议使网络中的各个计算机时间达到…...

大数据学习栈记——Neo4j的安装与使用

本文介绍图数据库Neofj的安装与使用&#xff0c;操作系统&#xff1a;Ubuntu24.04&#xff0c;Neofj版本&#xff1a;2025.04.0。 Apt安装 Neofj可以进行官网安装&#xff1a;Neo4j Deployment Center - Graph Database & Analytics 我这里安装是添加软件源的方法 最新版…...

模型参数、模型存储精度、参数与显存

模型参数量衡量单位 M&#xff1a;百万&#xff08;Million&#xff09; B&#xff1a;十亿&#xff08;Billion&#xff09; 1 B 1000 M 1B 1000M 1B1000M 参数存储精度 模型参数是固定的&#xff0c;但是一个参数所表示多少字节不一定&#xff0c;需要看这个参数以什么…...

Spring Boot 实现流式响应(兼容 2.7.x)

在实际开发中&#xff0c;我们可能会遇到一些流式数据处理的场景&#xff0c;比如接收来自上游接口的 Server-Sent Events&#xff08;SSE&#xff09; 或 流式 JSON 内容&#xff0c;并将其原样中转给前端页面或客户端。这种情况下&#xff0c;传统的 RestTemplate 缓存机制会…...

Java如何权衡是使用无序的数组还是有序的数组

在 Java 中,选择有序数组还是无序数组取决于具体场景的性能需求与操作特点。以下是关键权衡因素及决策指南: ⚖️ 核心权衡维度 维度有序数组无序数组查询性能二分查找 O(log n) ✅线性扫描 O(n) ❌插入/删除需移位维护顺序 O(n) ❌直接操作尾部 O(1) ✅内存开销与无序数组相…...

vue3 字体颜色设置的多种方式

在Vue 3中设置字体颜色可以通过多种方式实现&#xff0c;这取决于你是想在组件内部直接设置&#xff0c;还是在CSS/SCSS/LESS等样式文件中定义。以下是几种常见的方法&#xff1a; 1. 内联样式 你可以直接在模板中使用style绑定来设置字体颜色。 <template><div :s…...

高等数学(下)题型笔记(八)空间解析几何与向量代数

目录 0 前言 1 向量的点乘 1.1 基本公式 1.2 例题 2 向量的叉乘 2.1 基础知识 2.2 例题 3 空间平面方程 3.1 基础知识 3.2 例题 4 空间直线方程 4.1 基础知识 4.2 例题 5 旋转曲面及其方程 5.1 基础知识 5.2 例题 6 空间曲面的法线与切平面 6.1 基础知识 6.2…...

土地利用/土地覆盖遥感解译与基于CLUE模型未来变化情景预测;从基础到高级,涵盖ArcGIS数据处理、ENVI遥感解译与CLUE模型情景模拟等

&#x1f50d; 土地利用/土地覆盖数据是生态、环境和气象等诸多领域模型的关键输入参数。通过遥感影像解译技术&#xff0c;可以精准获取历史或当前任何一个区域的土地利用/土地覆盖情况。这些数据不仅能够用于评估区域生态环境的变化趋势&#xff0c;还能有效评价重大生态工程…...

鱼香ros docker配置镜像报错:https://registry-1.docker.io/v2/

使用鱼香ros一件安装docker时的https://registry-1.docker.io/v2/问题 一键安装指令 wget http://fishros.com/install -O fishros && . fishros出现问题&#xff1a;docker pull 失败 网络不同&#xff0c;需要使用镜像源 按照如下步骤操作 sudo vi /etc/docker/dae…...

UR 协作机器人「三剑客」:精密轻量担当(UR7e)、全能协作主力(UR12e)、重型任务专家(UR15)

UR协作机器人正以其卓越性能在现代制造业自动化中扮演重要角色。UR7e、UR12e和UR15通过创新技术和精准设计满足了不同行业的多样化需求。其中&#xff0c;UR15以其速度、精度及人工智能准备能力成为自动化领域的重要突破。UR7e和UR12e则在负载规格和市场定位上不断优化&#xf…...

[Java恶补day16] 238.除自身以外数组的乘积

给你一个整数数组 nums&#xff0c;返回 数组 answer &#xff0c;其中 answer[i] 等于 nums 中除 nums[i] 之外其余各元素的乘积 。 题目数据 保证 数组 nums之中任意元素的全部前缀元素和后缀的乘积都在 32 位 整数范围内。 请 不要使用除法&#xff0c;且在 O(n) 时间复杂度…...