模式识别与机器学习(十):梯度提升树
1.原理
提升方法实际采用加法模型(即基函数的线性组合)与前向分步算法。以决策树为基函数的提升方法称为提升树(boosting tree)。对分类问题决策树是二叉分类树,对回归问题决策树是二叉回归树。提升树模型可以表示为决策树的加法模型:
f M ( x ) = ∑ m = 1 M T ( x ; θ m ) f_M(x)=\sum_{m=1}^MT(x;\theta_m) fM(x)=m=1∑MT(x;θm)
其中, T ( x ; θ m ) T(x;\theta_{m}) T(x;θm)表示决策树, θ m \theta_{m} θm为决策树参数,M为树的个数。
而梯度提升树的具体步骤如下:
1.初始化 f 0 ( x ) = 0 f_{0}(x)=0 f0(x)=0,并选取损失函数 L ( y , f ( x ) ) \mathrm{~L(y,f(x))} L(y,f(x));
2.对于 m = 0 , 1 , ⋯ , M \mathrm{m}=0,1,\cdots,\mathrm{M} m=0,1,⋯,M
(1).计算负梯度:
− g m ( x i ) = − ∂ ( L ( y , f ( x i ) ) ) ∂ f ( x i ) f ( x ) = f m − 1 ( x ) -\mathrm{g_m(x_i)=-\frac{\partial\left(L\bigl(y,f(x_i)\bigr)\right)}{\partial f(x_i)}_{f(x)=f_{m-1}(x)}} −gm(xi)=−∂f(xi)∂(L(y,f(xi)))f(x)=fm−1(x)
(2).以负梯度 − g m ( x i ) -\mathrm{g_{m}(x_{i})} −gm(xi)为预测值,训练一个回归树 T ( x ; θ m ) T(x;\theta_{m}) T(x;θm);
(3).更新 f m ( x ) = f m − 1 ( x ) + ρ T ( x ; θ m ) f_{m}(x)=f_{m-1}(x)+\rho T(x;\theta_{m}) fm(x)=fm−1(x)+ρT(x;θm);
3.经过M次迭代后取得的模型即为
f M ( x ) = ∑ m = 1 M ρ T ( x ; θ m ) f_M(x)=\sum_{m=1}^M\rho T(x;\theta_m) fM(x)=m=1∑MρT(x;θm)
这里的 ρ \rho ρ为学习率,可用来防止过拟合。
此次实验用梯度提升树来实现多分类任务,在这种情况下输出模型经过softmax函数转化为每个类别的置信概率,从而实现分类目标。
2.代码
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.ensemble import GradientBoostingClassifier# 加载鸢尾花数据集
iris = load_iris()
X = iris.data
y = iris.target# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)# 创建梯度提升树分类器
clf = GradientBoostingClassifier(n_estimators=100, learning_rate=1.0, max_depth=1, random_state=42)# 训练模型
clf.fit(X_train, y_train)# 预测测试集
y_pred = clf.predict(X_test)# 打印预测结果
print(y_pred)
我们使用了鸢尾花数据集,这是一个常用的多类别分类数据集。我们首先加载数据,然后划分为训练集和测试集。然后,我们创建一个梯度提升树分类器,并使用训练集对其进行训练。最后,我们使用训练好的模型对测试集进行预测,并打印出预测结果。
GradientBoostingClassifier的参数n_estimators表示弱学习器的最大数量,learning_rate表示学习率,max_depth表示每个弱学习器(决策树)的最大深度,这些参数都可以根据需要进行调整。
相关文章:
模式识别与机器学习(十):梯度提升树
1.原理 提升方法实际采用加法模型(即基函数的线性组合)与前向分步算法。以决策树为基函数的提升方法称为提升树(boosting tree)。对分类问题决策树是二叉分类树,对回归问题决策树是二叉回归树。提升树模型可以表示为决…...
《剑指offer》Java版--12.矩阵中的路径(DFS+剪枝)
剑指offer原题:矩阵中的路径 请设计一个函数,用来判断在一个矩阵中是否存在一条包含某字符串所有字符的路径。路径可以从矩阵中的任意一格开始,每一步可以在矩阵中向左、右、上、下移动一格。如果一条路径经过了矩阵的某一格,那么该路径不能再…...
AI智能体的介绍
最近几个月 随着大语言模型的持续火爆 利用大模型来构建AI智能体的研究呢 也陆续进入了人们的视野 AI智能体这个概念呢 也逐渐的流行开来 先是斯坦福大学谷歌的研究者们 成功的构建了一个虚拟小镇 小镇上的居民呢不再是人 而是25个AI的智能体 他们的行为呢 比人类角…...
Java设计模式-单例模式(Singleton)
Java中实现单例模式有几种不同的方式,每种方式都有其特点和适用场景。下面是两种常用的实现方式:懒汉式和饿汉式。 懒汉式(线程安全) 懒汉式单例是指在第一次被引用时才会创建实例。为了确保线程安全,可以使用同步方法或同步块。 public class SingletonLazy {private sta…...
若依vue如何展示一个HTML页面(或者展示Markdown文档)
一. 前言 ⚠ 本文是展示Markdown的方法,不能直接前端编辑Markdown文档. 二. 准备部分 用Typora编辑器打开需要导出html页面,我这里使用Typora来导出 1. 先将md文件导出成html 2. 将导出好的文件放在若依vue的pubilc下(文件可以是中文) 三. 代码部分 1.使用v-html来展示HT…...
优化for循环(js的问题)
性能优化 var array [];for (let index 0; index < array.length; index) {// do something }// 优化后 for (let index 0, len array.length; index < len; index) {// do something } 算法优化 // 求和:1 2 3 4 ... 100 var sum 0; for (let i …...
如何更好的去理解源码
前言 这篇文章我准备来聊一聊如何去阅读开源项目的源码。 在聊如何去阅读源码之前,先来简单说一下为什么要去阅读源码,大致可分为以下几点原因: 最直接的原因,就是面试需要,面试喜欢问源码,读完源码才可以…...
c# opencv 获取多边形中心点
在C#中使用OpenCV获取多边形的中心点,可以按照以下步骤进行: 首先,你需要找到图像中的轮廓。这可以通过FindContours方法实现: using OpenCvSharp;Mat src new Mat("your_image_path", ImreadModes.Grayscale); Mat …...
Redis数据一致解决方案
文章目录 前言技术积累查询缓存业务流程更新缓存业务流程 更新缓存问题解决方案写在最后 前言 当前的应用服务很多都有着高并发的业务场景,对于高并发的解决方案一般会用到缓存来降低数据库压力,并且还能够提高系统性能减少请求耗时,比如我们…...
安捷伦DSOX2024A示波器
参考波形 示波器的非易失参考波形存储器可以存储两个波形。比较这些参考波形与实时波形,并对已存储数据进行后分析和测量。您也可将波形数据存储到移动USB 存储器设备。这些数据还能调用到示波器的两个参考存储器的其中一个,进行全面的波形测量和分析。为…...
Leetcode算法系列| 4. 寻找两个正序数组的中位数
目录 1.题目2.题解C# 解法一:合并List根据长度找中位数C# 解法二:归并排序后根据长度找中位数C# 解法三:方法二的优化,不真实添加到listC# 解法四:第k小数C# 解法五:从中位数的概念定义入手 1.题目 给定两个…...
Java整合APNS推送消息-IOS-APP(基于.p12推送证书)
推送整体流程 1.在开发者中心申请对应的证书(我用的是.p12文件) 2.苹果手机用户注册到APNS,APNS将注册的token返回给APP(服务端接收使用)。 3.后台服务连接APNS,获取连接对象 4.后台服务构建消息载体 5.后台…...
C语言strcpy函数用法
C语言strcpy函数用法 大家好,我是免费搭建查券返利机器人赚佣金就用微赚淘客系统3.0的小编,也是冬天不穿秋裤,天冷也要风度的程序猿!今天,让我们一起深入了解C语言中的strcpy函数,这是一个在字符串处理中非…...
汽车服务品牌网站建设的作用是什么
汽车服务涵盖多个层面,在保修维护这一块更是精准到了车内车外,无论是品牌商还是市场中各维修部,都能给到车辆很好的维修养护服务。如今车辆的人均拥有量已经非常高,也因此市场中围绕汽车相关的从业者也比较多。 首先就是拓客引流…...
【iOS】UICollectionView
文章目录 前言一、实现简单九宫格布局二、UICollectionView中的常用方法和属性1.UICollectionViewFlowLayout相关属性2.UICollectionView相关属性 三、协议和代理方法:四、九宫格式的布局进行升级五、实现瀑布流布局实现思路实现原理代码调用顺序实现步骤实现效果 总…...
Linux poll 和 select 机制
poll select 介绍 使用非阻塞 I/O 的应用程序常常使用 poll, select, 和 epoll 系统调用. poll, select 和 epoll 本质上有相同的功能: 每个允许一个进程来决定它是否可读或者写一个 或多个文件而不阻塞. 这些调用也可阻塞进程直到任何一个给定集合的文件描述符可用来 读或写.…...
【JVM基础】 JVM 如何加载一个类以及类加载机制
文章目录 1、什么时候一个类会被加载?1、包含 main 方法的主类2、非 包含 main 方法的主类,什么时候去加载? 3、类加载器如何加载一个类?1、验证阶段:2、准备阶段:3、解析阶段:4、初始化&#x…...
Android Studio使用Genymotion
1. Genymotion介绍 GenyMotion速度之快令人发指,模拟效果堪比真机调试,支持绝大部分的模拟器功能,甚至包括语音,Google Now,支持eclipse, android studio。非常适合用来开发和演示效果。 2. Genymotion下载 Genymotio…...
Mysql sql_mode参数配置
今天在使用数据库查询时使用了Group语句,遇到问题: SELECT t1.UnderlyingInstrumentID, t2.* FROM t_OptionInstrument t1 LEFT JOIN t_Instrument t2 ON t2.InstrumentID t1.UnderlyingInstrumentID GROUP BY t1.UnderlyingInstrumentID > 1055 - …...
SpringIOC之AbstractMessageSource
博主介绍:✌全网粉丝5W,全栈开发工程师,从事多年软件开发,在大厂呆过。持有软件中级、六级等证书。可提供微服务项目搭建与毕业项目实战,博主也曾写过优秀论文,查重率极低,在这方面有丰富的经验…...
k8s从入门到放弃之Ingress七层负载
k8s从入门到放弃之Ingress七层负载 在Kubernetes(简称K8s)中,Ingress是一个API对象,它允许你定义如何从集群外部访问集群内部的服务。Ingress可以提供负载均衡、SSL终结和基于名称的虚拟主机等功能。通过Ingress,你可…...
连锁超市冷库节能解决方案:如何实现超市降本增效
在连锁超市冷库运营中,高能耗、设备损耗快、人工管理低效等问题长期困扰企业。御控冷库节能解决方案通过智能控制化霜、按需化霜、实时监控、故障诊断、自动预警、远程控制开关六大核心技术,实现年省电费15%-60%,且不改动原有装备、安装快捷、…...
React Native在HarmonyOS 5.0阅读类应用开发中的实践
一、技术选型背景 随着HarmonyOS 5.0对Web兼容层的增强,React Native作为跨平台框架可通过重新编译ArkTS组件实现85%以上的代码复用率。阅读类应用具有UI复杂度低、数据流清晰的特点。 二、核心实现方案 1. 环境配置 (1)使用React Native…...
Auto-Coder使用GPT-4o完成:在用TabPFN这个模型构建一个预测未来3天涨跌的分类任务
通过akshare库,获取股票数据,并生成TabPFN这个模型 可以识别、处理的格式,写一个完整的预处理示例,并构建一个预测未来 3 天股价涨跌的分类任务 用TabPFN这个模型构建一个预测未来 3 天股价涨跌的分类任务,进行预测并输…...
定时器任务——若依源码分析
分析util包下面的工具类schedule utils: ScheduleUtils 是若依中用于与 Quartz 框架交互的工具类,封装了定时任务的 创建、更新、暂停、删除等核心逻辑。 createScheduleJob createScheduleJob 用于将任务注册到 Quartz,先构建任务的 JobD…...
五年级数学知识边界总结思考-下册
目录 一、背景二、过程1.观察物体小学五年级下册“观察物体”知识点详解:由来、作用与意义**一、知识点核心内容****二、知识点的由来:从生活实践到数学抽象****三、知识的作用:解决实际问题的工具****四、学习的意义:培养核心素养…...
ETLCloud可能遇到的问题有哪些?常见坑位解析
数据集成平台ETLCloud,主要用于支持数据的抽取(Extract)、转换(Transform)和加载(Load)过程。提供了一个简洁直观的界面,以便用户可以在不同的数据源之间轻松地进行数据迁移和转换。…...
vue3 定时器-定义全局方法 vue+ts
1.创建ts文件 路径:src/utils/timer.ts 完整代码: import { onUnmounted } from vuetype TimerCallback (...args: any[]) > voidexport function useGlobalTimer() {const timers: Map<number, NodeJS.Timeout> new Map()// 创建定时器con…...
NFT模式:数字资产确权与链游经济系统构建
NFT模式:数字资产确权与链游经济系统构建 ——从技术架构到可持续生态的范式革命 一、确权技术革新:构建可信数字资产基石 1. 区块链底层架构的进化 跨链互操作协议:基于LayerZero协议实现以太坊、Solana等公链资产互通,通过零知…...
c#开发AI模型对话
AI模型 前面已经介绍了一般AI模型本地部署,直接调用现成的模型数据。这里主要讲述讲接口集成到我们自己的程序中使用方式。 微软提供了ML.NET来开发和使用AI模型,但是目前国内可能使用不多,至少实践例子很少看见。开发训练模型就不介绍了&am…...
