当前位置: 首页 > news >正文

ccc-pytorch-小实验合集(4)

文章目录

      • 一、 Himmelblau 优化
      • 二、多分类实战-Mnist
      • 三、Sequential与CPU加速-Mnist
      • 四、visidom可视化

一、 Himmelblau 优化

Himmelblau 是一个具有4个最优值的2维目标函数。其函数和最优值点如下:
在这里插入图片描述
图象绘制:

import numpy as np
from matplotlib import pyplot as pltdef himmelblau(x):return (x[0] ** 2 + x[1] - 11) ** 2 + (x[0] + x[1] ** 2 - 7) ** 2x = np.arange(-6, 6, 0.1)
y = np.arange(-6, 6, 0.1)
print('x,y range:', x.shape, y.shape)
X, Y = np.meshgrid(x, y)
print('X,Y maps:', X.shape, Y.shape)
Z = himmelblau([X, Y])fig = plt.figure('himmelblau')
ax = fig.add_subplot(projection='3d')
ax.plot_surface(X, Y, Z)
ax.view_init(60, -30)
ax.set_xlabel('x')
ax.set_ylabel('y')
plt.show()

在这里插入图片描述
Gradient Descent:

# [1., 0.], [-4, 0.], [4, 0.]
x = torch.tensor([-4., 0.], requires_grad=True)
optimizer = torch.optim.Adam([x], lr=1e-3)
for step in range(20000):pred = himmelblau(x)# 清空各参数的梯度optimizer.zero_grad()pred.backward()# 优化器更新参数x'=x-lr*梯度optimizer.step()if step % 2000 == 0:print ('step {}: x = {}, f(x) = {}'.format(step, x.tolist(), pred.item()))

在这里插入图片描述
给予x不同的初始化位置可以得到不同的收敛结果和次数。说明初始位置的选择对于收敛的过程和结果非常重要。

二、多分类实战-Mnist

import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transformsbatch_size=200
learning_rate=0.01
epochs=10train_loader = torch.utils.data.DataLoader(datasets.MNIST('../data', train=True, download=True,transform=transforms.Compose([transforms.ToTensor(),transforms.Normalize((0.1307,), (0.3081,))])),batch_size=batch_size, shuffle=True)
test_loader = torch.utils.data.DataLoader(datasets.MNIST('../data', train=False, transform=transforms.Compose([transforms.ToTensor(),transforms.Normalize((0.1307,), (0.3081,))])),batch_size=batch_size, shuffle=True)#Network Architecture
w1, b1 = torch.randn(200, 784, requires_grad=True),\torch.zeros(200, requires_grad=True)
w2, b2 = torch.randn(200, 200, requires_grad=True),\torch.zeros(200, requires_grad=True)
w3, b3 = torch.randn(10, 200, requires_grad=True),\torch.zeros(10, requires_grad=True)
#kaiming初始化
torch.nn.init.kaiming_normal_(w1)
torch.nn.init.kaiming_normal_(w2)
torch.nn.init.kaiming_normal_(w3)def forward(x):x = x@w1.t() + b1x = F.relu(x)x = x@w2.t() + b2x = F.relu(x)x = x@w3.t() + b3x = F.relu(x)return xoptimizer = optim.SGD([w1, b1, w2, b2, w3, b3], lr=learning_rate)
# cross-entropy 等同于 softmax + log + nll_loss三个和
criteon = nn.CrossEntropyLoss()for epoch in range(epochs):for batch_idx, (data, target) in enumerate(train_loader):data = data.view(-1, 28*28)logits = forward(data)loss = criteon(logits, target)optimizer.zero_grad()loss.backward()optimizer.step()if batch_idx % 100 == 0:print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(epoch, batch_idx * len(data), len(train_loader.dataset),100. * batch_idx / len(train_loader), loss.item()))test_loss = 0correct = 0for data, target in test_loader:data = data.view(-1, 28 * 28)logits = forward(data)test_loss += criteon(logits, target).item()pred = logits.data.max(1)[1]correct += pred.eq(target.data).sum()test_loss /= len(test_loader.dataset)print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(test_loss, correct, len(test_loader.dataset),100. * correct / len(test_loader.dataset)))

image-20230302210959169
注意事项:

  • Batch_Size太小导致收敛过慢,太大导致易陷入sharp minima,泛化性不好
  • 注意初始化这个关键步骤

三、Sequential与CPU加速-Mnist

import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transformsbatch_size=200
learning_rate=0.01
epochs=10train_loader = torch.utils.data.DataLoader(datasets.MNIST('../data', train=True, download=True,transform=transforms.Compose([transforms.ToTensor(),transforms.Normalize((0.1307,), (0.3081,))])),batch_size=batch_size, shuffle=True)
test_loader = torch.utils.data.DataLoader(datasets.MNIST('../data', train=False, transform=transforms.Compose([transforms.ToTensor(),transforms.Normalize((0.1307,), (0.3081,))])),batch_size=batch_size, shuffle=True)class MLP(nn.Module):def __init__(self):super(MLP, self).__init__()self.model = nn.Sequential(nn.Linear(784, 200),nn.LeakyReLU(inplace=True),nn.Linear(200, 200),nn.LeakyReLU(inplace=True),nn.Linear(200, 10),nn.LeakyReLU(inplace=True),)def forward(self, x):x = self.model(x)return xdevice = torch.device('cuda:0')
net = MLP().to(device)
optimizer = optim.SGD(net.parameters(), lr=learning_rate)
criteon = nn.CrossEntropyLoss().to(device)for epoch in range(epochs):for batch_idx, (data, target) in enumerate(train_loader):data = data.view(-1, 28*28)data, target = data.to(device), target.cuda()logits = net(data)loss = criteon(logits, target)optimizer.zero_grad()loss.backward()optimizer.step()if batch_idx % 100 == 0:print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(epoch, batch_idx * len(data), len(train_loader.dataset),100. * batch_idx / len(train_loader), loss.item()))test_loss = 0correct = 0for data, target in test_loader:data = data.view(-1, 28 * 28)data, target = data.to(device), target.cuda()logits = net(data)test_loss += criteon(logits, target).item()pred = logits.argmax(dim=1)correct += pred.eq(target).float().sum().item()test_loss /= len(test_loader.dataset)print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(test_loss, correct, len(test_loader.dataset),100. * correct / len(test_loader.dataset)))

image-20230302212502896
注意事项:

  • MLP Class中对继承自父类的属性进行初始化,而且是用父类的初始化方法来初始化继承的属性。
  • Sequential 本质是一个可以添加组件的模块,输入通过组成的流水线后得到输出
  • 对于单卡计算机而言,使用torch.device(‘cuda’) 与 torch.device(‘cuda:0’)相同

四、visidom可视化

import  torch
import  torch.nn as nn
import  torch.optim as optim
from    torchvision import datasets, transforms
from visdom import Visdombatch_size=200
learning_rate=0.01
epochs=10train_loader = torch.utils.data.DataLoader(datasets.MNIST('../data', train=True, download=True,transform=transforms.Compose([transforms.ToTensor(),# transforms.Normalize((0.1307,), (0.3081,))])),batch_size=batch_size, shuffle=True)
test_loader = torch.utils.data.DataLoader(datasets.MNIST('../data', train=False, transform=transforms.Compose([transforms.ToTensor(),# transforms.Normalize((0.1307,), (0.3081,))])),batch_size=batch_size, shuffle=True)class MLP(nn.Module):def __init__(self):super(MLP, self).__init__()self.model = nn.Sequential(nn.Linear(784, 200),nn.LeakyReLU(inplace=True),nn.Linear(200, 200),nn.LeakyReLU(inplace=True),nn.Linear(200, 10),nn.LeakyReLU(inplace=True),)def forward(self, x):x = self.model(x)return xdevice = torch.device('cuda:0')
net = MLP().to(device)
optimizer = optim.SGD(net.parameters(), lr=learning_rate)
criteon = nn.CrossEntropyLoss().to(device)viz = Visdom()viz.line([0.], [0.], win='train_loss', opts=dict(title='train loss'))
viz.line([[0.0, 0.0]], [0.], win='test', opts=dict(title='test loss&acc.',legend=['loss', 'acc.']))
global_step = 0for epoch in range(epochs):for batch_idx, (data, target) in enumerate(train_loader):data = data.view(-1, 28*28)data, target = data.to(device), target.cuda()logits = net(data)loss = criteon(logits, target)optimizer.zero_grad()loss.backward()optimizer.step()global_step += 1viz.line([loss.item()], [global_step], win='train_loss', update='append')if batch_idx % 100 == 0:print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(epoch, batch_idx * len(data), len(train_loader.dataset),100. * batch_idx / len(train_loader), loss.item()))test_loss = 0correct = 0for data, target in test_loader:data = data.view(-1, 28 * 28)data, target = data.to(device), target.cuda()logits = net(data)test_loss += criteon(logits, target).item()pred = logits.argmax(dim=1)correct += pred.eq(target).float().sum().item()viz.line([[test_loss, correct / len(test_loader.dataset)]],[global_step], win='test', update='append')viz.images(data.view(-1, 1, 28, 28), win='x')viz.text(str(pred.detach().cpu().numpy()), win='pred',opts=dict(title='pred'))test_loss /= len(test_loader.dataset)print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(test_loss, correct, len(test_loader.dataset),100. * correct / len(test_loader.dataset)))

在这里插入图片描述

相关文章:

ccc-pytorch-小实验合集(4)

文章目录一、 Himmelblau 优化二、多分类实战-Mnist三、Sequential与CPU加速-Mnist四、visidom可视化一、 Himmelblau 优化 Himmelblau 是一个具有4个最优值的2维目标函数。其函数和最优值点如下: 图象绘制: import numpy as np from matplotlib impo…...

webrtc音频系列——4、RTP与RTCP协议

如果让你从0开发一套实时互动直播系统,你首先要选择网络传输协议。UDP 还是 TCP?答案是:UDP。为什么实时传输不能用 TCP ?TCP 的目的就是实现数据的可靠传输,因此他有一套 握手,发送 -> 确认&#xff0c…...

C++枚举解读(enum)

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录前言一、枚举是什么?二、使用步骤1.作用域2.隐式类型转换3.显式指定枚举值类型4.指定枚举值的值4.整形显式转换成枚举总结前言 对于开发C来说&#xff0…...

OSCP-课外5(Web图片泄露服务信息、日志中毒)

目录 一、主机发现与端口扫描 二、Web信息收集 三、系统信息收集与提权 一、主机发现与端口扫描...

汇编指令学习(ADD,SUB,MUL,DIV,XADD,INC,DEC,NEG)

一、ADD加法操作指令将eax置1,ebx置2,运行下面命令,将结果保存到eaxadd eax,ebx扩展:adc需要再加上CF标志位的值adc eax,ebx二、SUB减法操作指令将eax置3,ebx置2,运行下面命令,将结果…...

【电源专题】案例:充电芯片损坏为什么判断是从NTC进入的EOS

最近有发现一个异常就是测试部测试测试然后充电芯片就无法使用了。通过二极管特性分析(参考文章:电源专题】案例:电源芯片厂家怎么判断电源芯片端口是否损坏)是NTC管脚已经损坏对地短路了。但是以前没有发现这个问题,最近更换了芯片后就发现的特别明显。 首先分析一下现在…...

C语言中的数据储存规则

写在开头 关于复习的相关内容其实从一开始就列出了大纲,但是迟迟没有开始复习,一方面是因为学校学业却是繁忙,另一方面还是内心对旧知识掌握不熟练需要再学一遍的畏惧和懒惰,但如今,复习必须开始了。今天我从C语言的最…...

Android kotlin实战之协程suspend详解与使用

前言 Kotlin 是一门仅在标准库中提供最基本底层 API 以便各种其他库能够利用协程的语言。与许多其他具有类似功能的语言不同,async 与 await 在 Kotlin 中并不是关键字,甚至都不是标准库的一部分。此外,Kotlin 的 挂起函数 概念为异步操作提供…...

Pycharm中的Virtualenv Environment、Conda Environment

版本一 Conda Environment该不该选? 先说结论,该选,而且还是正解。前提是你打算"用Anaconda来管理各种Python环境,同时管理Python下面的各种包"。 选了Conda Environment意味着什么? 意味着你以后如果要装新的包的话&#xf…...

C++容器介绍:vector

目录vector简介使用方法1.头文件2.vector声明及初始化3.vector基本操作(1). 容量(2). 修改(3)迭代器(4)元素的访问(5)算法vector 简介 vector是表示可变大小数组的序列容器。就像数组一样,vector也采用的连续存储空间来存储元素。也就是意味着可以采用下标对vecto…...

抗锯齿和走样(笔记)

Artifacts(瑕疵): 比如人眼采样频率跟不上陀螺的旋转速度,这时就有可能看到陀螺在反方向旋转怎么做抗锯齿(滤波): 在采样之前先进行一个模糊操作,可以降低锯齿的明显程度 通过傅里叶…...

线程池的使用——线程池的创建方式

线程池的使用——创建线程线程池的创建线程池的创建方式Executors.newFixedThreadPool:Executors.newCachedThreadPool:Executors.newSingleThreadExecutor:Executors.newScheduledThreadPool:Executors.newSingleThreadScheduled…...

代码随想录算法训练营day47 |动态规划 198打家劫舍 213打家劫舍II 337打家劫舍III

day47198.打家劫舍1.确定dp数组(dp table)以及下标的含义2.确定递推公式3.dp数组如何初始化4.确定遍历顺序5.举例推导dp数组213.打家劫舍II情况一:考虑不包含首尾元素情况二:考虑包含首元素,不包含尾元素情况三&#x…...

项目设计模式和规范

1、责任链模式 自己的理解:避免发生方与接收方解耦 优点:①降低发送方与接收方的耦合 ②简化他们对象 ③方便扩展新增 处理者 缺点:①不方便排错 ②性能问题,且使用不当容易搞出死循环 应用场景:拦截器 Interceptor和过滤器 filter:符合模式的进行拦截或者过滤到,然…...

无线WiFi安全渗透与攻防(一)之无线安全环境搭建

无线安全环境搭建 1.802.11标准 (1).概念 802.11标准是1997年IEEE最初制定的一个WLAN标准,工作在2.4GHz开放频段,支持1Mbit/s和2Mbit/s的数据传输速率,定义了物理层和MAC层规范,允许无线局域网及无线设备…...

【matplotlib】可视化解决方案——如何解决matplotlib中文乱码问题

问题概述 Matplotlib 默认不支持中文字体,这是因为 matplotlib 只支持 ASCII 字符,但是国人使用 matplotlib 肯定需要中文标注。如下图所示,当不对 Matplotlib 进行设置,而直接使用中文时,绘制的图像会出现中文乱码。…...

JAVA开发中GC日志打印简单通用的配置详解

如何配置一个完美的JVM日志打印信息 打印内容 打印基本的GC信息 打印对象分布情况 GC后打印堆数据 打印STW时间 打印safepoint信息 打印Reference处理信息 综上所述,最终的参数如下: 还有哪些问题呢?是不是有文件输出更好? 打印日…...

十进制的小数如何转二进制?二进制表示的小数如何转十进制?

😄 基础不牢,地动山摇~ 补补基础~ 文章目录 1、十进制的小数转二进制?2、二进制表示的小数转十进制?3、做道coding题巩固下:1、十进制的小数转二进制? 整数部分: 用普通的二进制表示即可。小数部分: 首先,将小数部分乘以2,取出整数部分作为二进制表示的第1位;然后…...

klipper使用webcam设置多个摄像头方式

一、前言 使用klipper设置多个摄像头,折腾了好些天,网上资料很少,这里写一个帖子记录一下 二、环境 参考链接:https://www.cnblogs.com/sjqlwy/p/klipper_webcam.html 我的klipper安装在香橙派上面,系统是debian&a…...

风力发电机组浪涌保护器安全防护方案

风机的庞大与危险高空作业注定了其在基建和维护中不易操作,风机设备的主电源、过程控制、网络与通讯、现场设备需要高等级的防雷浪涌保护器冲击保护,提高系统及设备的可靠性和可用性。风电场的主要发电设备风力发电机组“大风车”是风电场的主要发电设备…...

谷歌浏览器插件

项目中有时候会用到插件 sync-cookie-extension1.0.0:开发环境同步测试 cookie 至 localhost,便于本地请求服务携带 cookie 参考地址:https://juejin.cn/post/7139354571712757767 里面有源码下载下来,加在到扩展即可使用FeHelp…...

【kafka】Golang实现分布式Masscan任务调度系统

要求: 输出两个程序,一个命令行程序(命令行参数用flag)和一个服务端程序。 命令行程序支持通过命令行参数配置下发IP或IP段、端口、扫描带宽,然后将消息推送到kafka里面。 服务端程序: 从kafka消费者接收…...

RocketMQ延迟消息机制

两种延迟消息 RocketMQ中提供了两种延迟消息机制 指定固定的延迟级别 通过在Message中设定一个MessageDelayLevel参数,对应18个预设的延迟级别指定时间点的延迟级别 通过在Message中设定一个DeliverTimeMS指定一个Long类型表示的具体时间点。到了时间点后&#xf…...

Oracle查询表空间大小

1 查询数据库中所有的表空间以及表空间所占空间的大小 SELECTtablespace_name,sum( bytes ) / 1024 / 1024 FROMdba_data_files GROUP BYtablespace_name; 2 Oracle查询表空间大小及每个表所占空间的大小 SELECTtablespace_name,file_id,file_name,round( bytes / ( 1024 …...

【快手拥抱开源】通过快手团队开源的 KwaiCoder-AutoThink-preview 解锁大语言模型的潜力

引言: 在人工智能快速发展的浪潮中,快手Kwaipilot团队推出的 KwaiCoder-AutoThink-preview 具有里程碑意义——这是首个公开的AutoThink大语言模型(LLM)。该模型代表着该领域的重大突破,通过独特方式融合思考与非思考…...

微信小程序 - 手机震动

一、界面 <button type"primary" bindtap"shortVibrate">短震动</button> <button type"primary" bindtap"longVibrate">长震动</button> 二、js逻辑代码 注&#xff1a;文档 https://developers.weixin.qq…...

佰力博科技与您探讨热释电测量的几种方法

热释电的测量主要涉及热释电系数的测定&#xff0c;这是表征热释电材料性能的重要参数。热释电系数的测量方法主要包括静态法、动态法和积分电荷法。其中&#xff0c;积分电荷法最为常用&#xff0c;其原理是通过测量在电容器上积累的热释电电荷&#xff0c;从而确定热释电系数…...

A2A JS SDK 完整教程:快速入门指南

目录 什么是 A2A JS SDK?A2A JS 安装与设置A2A JS 核心概念创建你的第一个 A2A JS 代理A2A JS 服务端开发A2A JS 客户端使用A2A JS 高级特性A2A JS 最佳实践A2A JS 故障排除 什么是 A2A JS SDK? A2A JS SDK 是一个专为 JavaScript/TypeScript 开发者设计的强大库&#xff…...

MySQL JOIN 表过多的优化思路

当 MySQL 查询涉及大量表 JOIN 时&#xff0c;性能会显著下降。以下是优化思路和简易实现方法&#xff1a; 一、核心优化思路 减少 JOIN 数量 数据冗余&#xff1a;添加必要的冗余字段&#xff08;如订单表直接存储用户名&#xff09;合并表&#xff1a;将频繁关联的小表合并成…...

【JavaSE】多线程基础学习笔记

多线程基础 -线程相关概念 程序&#xff08;Program&#xff09; 是为完成特定任务、用某种语言编写的一组指令的集合简单的说:就是我们写的代码 进程 进程是指运行中的程序&#xff0c;比如我们使用QQ&#xff0c;就启动了一个进程&#xff0c;操作系统就会为该进程分配内存…...